610 research outputs found

    Passive propellant system

    Get PDF
    The system utilizes a spherical tank structure A separated into two equal volume compartments by a flat bulkhead B. Each compartment has four similar gallery channel legs located in the principal vehicle axes, ensuring that bulk propellant will contact at least one gallery leg during vehicle maneuvers. The forward compartment gallery channel legs collect propellant and feed it into the aft compartment through communication screens which protrude into the aft compartment. The propellant is then collected by the screened gallery channels in the aft compartment and supplied to the propellant outlet. The invention resides in the independent gallery assembly and screen structure by means of which propellant flow from forward to aft compartments is maintained. Liquid surface tension of the liquid on the screens is used to control liquid flow. The system provides gas-free propellants in low or zero-g environments regardless of axial accelerations and propellant orientation in bulk regions of the vessel

    I. Jet Formation and Evolution due to 3D Magnetic Reconnection

    Get PDF
    Using simulated data-driven three-dimensional resistive MHD simulations of the solar atmosphere, we show that magnetic reconnection can be responsible of the formation of jets with characteristic of Type II spicules. For this, we numerically model the photosphere-corona region using the C7 equilibrium atmosphere model. The initial magnetic configuration is a 3D potential magnetic field, extrapolated up to the solar corona region from a dynamic realistic simulation of solar photospheric magnetoconvection model which is mimicking quiet-Sun. In this case we consider a uniform and constant value of the magnetic resistivity of 12.56 Ω m. We have found that formation of the jets depends on the Lorentz force, which helps to accelerate the plasma upwards. Analyzing various properties of the jet dynamics, we found that the jet structure shows Doppler shift near to regions with high vorticity. The morphology, upward velocity, covering a range up to 100 km s−1, and life-time of the estructure, bigger than 100 s, are similar to those expected for Type II spicules

    Translation competence as a complex multidimensional aspect

    Get PDF
    This article is devoted to problems of translation didactics. A comparative study of translation competence concepts, their main methodological characteristics, and means of competence formation allows to define the translation teaching goal as the formation of translation competence, which comprises knowledge and skills required for translator’s professional activity. The PACTE group model is chosen as one of the most comprehensive and frequently cited models for organizing the training process

    In situ generation of coronal Alfvén waves by jets

    Get PDF
    Within the framework of 3D resistive magnetohydrodynamic, we simulate the formation of a plasma jet with the morphology, upward velocity up to 130 km s−1, and time-scale formation between 60 and 90 s after beginning of simulation, similar to those expected for type II spicules. Initial results of this simulation were published in paper by, e.g. González-Avilés et al. (2018), and present paper is devoted to the analysis of transverse displacements and rotational-type motion of the jet. Our results suggest that 3D magnetic reconnection may be responsible for the formation of the jet in paper by González-Avilés et al. (2018). In this paper, by calculating times series of the velocity components vx and vy in different points near to the jet for various heights we find transverse oscillations in agreement with spicule observations. We also obtain a time-distance plot of the temperature in a cross-cut at the plane x = 0.1 Mm and find significant transverse displacements of the jet. By analysing temperature isosurfaces of 104 K with the distribution of vx, we find that if the line-of-sight (LOS) is approximately perpendicular to the jet axis then there is both motion towards and away from the observer across the width of the jet. This red–blue shift pattern of the jet is caused by rotational motion, initially clockwise and anti-clockwise afterwards, which could be interpreted as torsional motion and may generate torsional Alfvén waves in the corona region. From a nearly vertical perspective of the jet the LOS velocity component shows a central blue-shift region surrounded by red-shifted plasma

    Contribution of the Myosin Binding Protein C Motif to Functional Effects in Permeabilized Rat Trabeculae

    Get PDF
    Myosin binding protein C (MyBP-C) is a thick-filament protein that limits cross-bridge cycling rates and reduces myocyte power output. To investigate mechanisms by which MyBP-C affects contraction, we assessed effects of recombinant N-terminal domains of cardiac MyBP-C (cMyBP-C) on contractile properties of permeabilized rat cardiac trabeculae. Here, we show that N-terminal fragments of cMyBP-C that contained the first three immunoglobulin domains of cMyBP-C (i.e., C0, C1, and C2) plus the unique linker sequence termed the MyBP-C “motif” or “m-domain” increased Ca2+ sensitivity of tension and increased rates of tension redevelopment (i.e., ktr) at submaximal levels of Ca2+. At concentrations ≥20 μM, recombinant proteins also activated force in the absence of Ca2+ and inhibited maximum Ca2+-activated force. Recombinant proteins that lacked the combination of C1 and the motif did not affect contractile properties. These results suggest that the C1 domain plus the motif constitute a functional unit of MyBP-C that can activate the thin filament

    Brain Region-specific Alterations in the Gene Expression of Cytokines, Immune Cell Markers and Cholinergic System Components During Peripheral Endotoxin-induced Inflammation

    Get PDF
    Inflammatory conditions characterized by excessive peripheral immune responses are associated with diverse alterations in brain function, and brain-derived neural pathways regulate peripheral inflammation. Important aspects of this bidirectional peripheral immune - brain communication, including the impact of peripheral inflammation on brain region-specific cytokine responses, and brain cholinergic signaling (which plays a role in controlling peripheral cytokine levels) remain unclear. To provide insight, we studied gene expression of cytokines, immune cell markers and brain cholinergic system components in the cortex, cerebellum, brainstem, hippocampus, hypothalamus, striatum, and thalamus in mice following an intraperitoneal lipopolysaccharide injection. Endotoxemia was accompanied by elevated serum levels of IL-1beta, IL-6 and other cytokines, and brain region-specific increases in Il1b (highest, relative to basal level increase - in cortex, lowest increase- in cerebellum) and Il6 (highest increase - in cerebellum, lowest increase - in striatum) mRNA expression. Gene expression of brain Gfap (astrocyte marker) was also differentially increased. However, Iba1 (microglia marker) mRNA expression was decreased in the cortex, hippocampus and other brain regions in parallel with morphological changes, indicating microglia activation. Brain choline acetyltransferase (Chat) mRNA expression was decreased in the striatum; acetylcholinesterase (Ache) mRNA expression was decreased in the cortex and increased in the hippocampus; and M1 muscarinic acetylcholine receptor (Chrm1) mRNA expression was decreased in the cortex and the brainstem. These results reveal a previously unrecognized regional specificity in brain immunoregulatory and cholinergic system gene expression in the context of peripheral inflammation, and are of interest for designing future anti-inflammatory approaches

    Isolation and Mechanical Measurements of Myofibrils from Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes.

    Get PDF
    Summary: Tension production and contractile properties are poorly characterized aspects of excitation-contraction coupling of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Previous approaches have been limited due to the small size and structural immaturity of early-stage hiPSC-CMs. We developed a substrate nanopatterning approach to produce hiPSC-CMs in culture with adult-like dimensions, T-tubule-like structures, and aligned myofibrils. We then isolated myofibrils from hiPSC-CMs and measured the tension and kinetics of activation and relaxation using a custom-built apparatus with fast solution switching. The contractile properties and ultrastructure of myofibrils more closely resembled human fetal myofibrils of similar gestational age than adult preparations. We also demonstrated the ability to study the development of contractile dysfunction of myofibrils from a patient-derived hiPSC-CM cell line carrying the familial cardiomyopathy MYH7 mutation (E848G). These methods can bring new insights to understanding cardiomyocyte maturation and developmental mechanical dysfunction of hiPSC-CMs with cardiomyopathic mutations. : In this article, Pioner and colleagues reported contractile properties of isolated myofibrils from hiPSC-CMs with highly mature morphology. This approach permits quantitative assessment of maturation and contractile properties of hiPSC-CMs and can be used to study the development of contractile dysfunction in genetically based cardiac diseases. The authors present a patient-derived cell line carrying a novel familial cardiomyopathy MYH7 mutation (E848G)

    II. Analysis of 3D plasma motions in a chromospheric jet formed due to magnetic reconnection

    Get PDF
    Within the framework of resistive MHD, implementing the C7 equilibrium atmosphere model and a 3D potential magnetic field realistic configuration, we simulate the formation of a plasma jet with the morphology, upward velocity up to 130 km/s and timescale formation between 60 and 90 s after beginning of simulation, similar to those expected for Type II spicules. Initial results of this simulation were published in Paper I e.g. \cite{Gonzalez-Aviles_et_al_2018} and present paper is devoted to the analysis of transverse displacements and rotational type motion of the jet. Our results suggest that 3D magnetic reconnection may be responsible for the formation of the jet in Paper I. In this paper, by calculating times series of the velocity components vx and vy in different points near to the jet for various heights we find transverse oscillations in agreement with spicule observations. We also obtain a time-distance plot of the temperature in a cross-cut at the plane x=0.1 Mm and find significant transverse displacements of the jet. By analyzing temperature isosurfaces of 104 K with the distribution of vx, we find that if the line-of-sight (LOS) is approximately perpendicular to the jet axis then there is both motion towards and away from the observer across the width of the jet. This red-blue shift pattern of the jet is caused by rotational motion, initially clockwise and anti-clockwise afterwards, which could be interpreted as torsional motion. From a nearly vertical perspective of the jet the LOS velocity component shows a central blue-shift region surrounded by red-shifted plasma
    corecore