409 research outputs found

    Shrinkage of Nepal's second largest lake (Phewa Tal) due to watershed degradation and increased sediment influx

    Get PDF
    Phewa Lake is an environmental and socio-economic asset to Nepal and the city of Pokhara. However, the lake area has decreased in recent decades due to sediment influx. The rate of this decline and the areal evolution of Phewa Lake due to artificial damming and sedimentation is disputed in the literature due to the lack of a historical time series. In this paper, we present an analysis of the lake's evolution from 1926 to 2018 and model the 50-year trajectory of shrinkage. The area of Phewa Lake expanded from 2.44 ± 1.02 km2 in 1926 to a maximum of 4.61 ± 0.07 km2 in 1961. However, the lake area change was poorly constrained prior to a 1957-1958 map. The contemporary lake area was 4.02 ± 0.07 km2 in April 2018, and expands seasonally by ~0.18 km2 due to the summer monsoon. We found no evidence to support a lake area of 10 km2 in 1956-1957, despite frequent reporting of this value in the literature. Based on the rate of areal decline and sediment influx, we estimate the lake will lose 80% of its storage capacity in the next 110-347 years, which will affect recreational use, agricultural irrigation, fishing, and a one-megawatt hydroelectric power facility. Mitigation of lake shrinkage will require addressing landslide activity and sediment transport in the watershed, as well as urban expansion along the shores

    Nkx2-5 and Sarcospan genetically interact in the development of the muscular ventricular septum of the heart

    Get PDF
    The muscular ventricular septum separates the flow of oxygenated and de-oxygenated blood in air-breathing vertebrates. Defects within it, termed muscular ventricular septal defects (VSDs), are common, yet less is known about how they arise than rarer heart defects. Mutations of the cardiac transcription factor NKX2-5 cause cardiac malformations, including muscular VSDs. We describe here a genetic interaction between Nkx2-5 and Sarcospan (Sspn) that affects the risk of muscular VSD in mice. Sspn encodes a protein in the dystrophin-glycoprotein complex. Sspn knockout (Sspn(KO)) mice do not have heart defects, but Nkx2-5(+/−)/Sspn(KO) mutants have a higher incidence of muscular VSD than Nkx2-5(+/−) mice. Myofibers in the ventricular septum follow a stereotypical pattern that is disrupted around a muscular VSD. Subendocardial myofibers normally run in parallel along the left ventricular outflow tract, but in the Nkx2-5(+/−)/Sspn(KO) mutant they commonly deviate into the septum even in the absence of a muscular VSD. Thus, Nkx2-5 and Sspn act in a pathway that affects the alignment of myofibers during the development of the ventricular septum. The malalignment may be a consequence of a defect in the coalescence of trabeculae into the developing ventricular septum, which has been hypothesized to be the mechanistic basis of muscular VSDs

    The genetic architecture of a congenital heart defect Is related to Its fitness cost

    Get PDF
    In newborns, severe congenital heart defects are rarer than mild ones. This epidemiological relationship between heart defect severity and incidence lacks explanation. Here, an analysis of ~10,00

    Climate Change and the Global Pattern of Moraine-Dammed Glacial Lake Outburst Floods

    Get PDF
    Despite recent research identifying a clear anthropogenic impact on glacier recession, the effect of recent climate change on glacier-related hazards is at present unclear. Here we present the first global spatio-temporal assessment of glacial lake outburst floods (GLOFs) focusing explicitly on lake drainage following moraine dam failure. These floods occur as mountain glaciers recede and downwaste. GLOFs can have an enormous impact on downstream communities and infrastructure. Our assessment of GLOFs associated with the rapid drainage of moraine-dammed lakes provides insights into the historical trends of GLOFs and their distributions under current and future global climate change. We observe a clear global increase in GLOF frequency and their regularity around 1930, which likely represents a lagged response to post-Little Ice Age warming. Notably, we also show that GLOF frequency and regularity – rather unexpectedly – have declined in recent decades even during a time of rapid glacier recession. Although previous studies have suggested that GLOFs will increase in response to climate warming and glacier recession, our global results demonstrate that this has not yet clearly happened. From an assessment of the timing of climate forcing, lag times in glacier recession, lake formation and moraine-dam failure, we predict increased GLOF frequencies during the next decades and into the 22nd century

    Climate change and the global pattern of moraine-dammed glacial lake outburst floods

    Get PDF
    This is the author accepted manuscript. The final version is available from EGU via the DOI in this recordThe published version, as published in The Cryosphere, is in ORE: http://hdl.handle.net/10871/32433Despite recent research identifying a clear anthropogenic impact on glacier recession, the effect of recent climate change on glacier-related hazards is at present unclear. Here we present the first global spatio-temporal assessment of glacial lake outburst floods (GLOFs) focusing explicitly on lake drainage following moraine dam failure. These floods occur as mountain glaciers recede and downwaste and many have an enormous impact on downstream communities and infrastructure. Our assessment of GLOFs associated with the collapse of moraine-dammed lakes provides insights into the historical trends of GLOFs and their distributions under current and future global climate change. We observe a clear global increase in GLOF frequency and their regularity around 1930, which likely represents a lagged response to post-Little Ice Age warming. Notably, we also show that GLOF frequency and their regularity – rather unexpectedly – has declined in recent decades even during a time of rapid glacier recession. Although previous studies have suggested that GLOFs will increase in response to climate warming and glacier recession, our global results demonstrate that this has not yet clearly happened. From assessment of the timing of climate forcing, lag times in glacier recession, lake formation and moraine dam failure, we predict increased GLOF frequencies during the next decades and into the 22nd century.SH was funded by a Leverhulme Research Fellowship. SH, RAB and AW acknowledge funding under the HELIX (European Union Seventh Framework Programme FP7/2007-2013 under grant agreement n° 603864). AW and RAB acknowledge funding from the Joint UK DECC/Defra Met Office Hadley Centre Climate Programme (GA01101)

    Climate change and the global pattern of moraine-dammed glacial lake outburst floods

    Get PDF
    This is the author accepted manuscript. The final version is available from EGU via the DOI in this recordThe published version, as published in The Cryosphere, is in ORE: http://hdl.handle.net/10871/32433Despite recent research identifying a clear anthropogenic impact on glacier recession, the effect of recent climate change on glacier-related hazards is at present unclear. Here we present the first global spatio-temporal assessment of glacial lake outburst floods (GLOFs) focusing explicitly on lake drainage following moraine dam failure. These floods occur as mountain glaciers recede and downwaste and many have an enormous impact on downstream communities and infrastructure. Our assessment of GLOFs associated with the collapse of moraine-dammed lakes provides insights into the historical trends of GLOFs and their distributions under current and future global climate change. We observe a clear global increase in GLOF frequency and their regularity around 1930, which likely represents a lagged response to post-Little Ice Age warming. Notably, we also show that GLOF frequency and their regularity – rather unexpectedly – has declined in recent decades even during a time of rapid glacier recession. Although previous studies have suggested that GLOFs will increase in response to climate warming and glacier recession, our global results demonstrate that this has not yet clearly happened. From assessment of the timing of climate forcing, lag times in glacier recession, lake formation and moraine dam failure, we predict increased GLOF frequencies during the next decades and into the 22nd century.SH was funded by a Leverhulme Research Fellowship. SH, RAB and AW acknowledge funding under the HELIX (European Union Seventh Framework Programme FP7/2007-2013 under grant agreement n° 603864). AW and RAB acknowledge funding from the Joint UK DECC/Defra Met Office Hadley Centre Climate Programme (GA01101)

    Superficial Parotidectomy by Retrograde Facial Nerve Dissection

    Get PDF
    Introduction: Tumors of the salivary gland are relatively uncommon and represent less than two percentage of all head and neck neoplasms. Parotid gland tumor comprises 85% of the salivary gland tumors of which 80% are being benign. Superficial parotidectomy is the commonest procedure done for parotid tumors which can be performed by either anteretrograde or retrograde facial nerve dissection technique. Methods: Outcome of 60 patients after superficial parotidectomy with retrograde facial nerve dissection has been studied. Results: Total of 60 patients had been studied. Complications like facial nerve weakness, Freys syndrome, salivary fistula, and wound infection were taken into account. Among them, 13.33% patients developed temporary facial nerve weakness, followed by temporary salivary fistula, 1.6%. None of the patients developed any severe complication. Conclusion: Superficial parotidectomy by retrograde facial nerve dissection is an easy technique to carry out with low complication rate and without compromising surgical outcome. Journal of Gandaki Medical College Vol. 10, No. 1, 2017, page: 25-2
    • …
    corecore