19 research outputs found
Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world
Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic.
Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality.
Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States.
Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis.
Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection
Modélisation du transfert radiatif de la fluorescence induite par le soleil, de l'émission thermique et du bilan radiatif des couverts végétaux 3D : vers un modÚle SIF complet
The photosynthetic activity of vegetation is of major interest given current environmental concerns such as climate change and water resources. In this process, chlorophyll molecules excited by absorption of photosynthetically active radiation (PAR), dissipate some of the energy not used for photosynthesis in the form of heat and fluorescence radiation (SIF) which turns out to be a reliable and instantaneous indicator of photosynthetic activity. However, many factors complicate the interpretation of remote sensing measurements in terms of SIF and thus photosynthetic activity. In particular, the 3D architecture of the vegetation greatly affects radiation propagation, and thus PAR absorption, SIF emission in the canopy, and the remote sensing measurement. Accurate modeling of SIF emission and remote sensing measurements is therefore essential to accurately interpret these measurements in terms of SIF emitted (i.e., photosynthetic activity) by the vegetation. Moreover, it must be adapted to complex landscapes of large dimensions, at least larger than the resolution of the relevant satellite sensors (e.g., 300m for the upcoming ESA FLEX satellite mission to measure SIF). Given the number, complexity and diversity of terms to be taken into account, this modeling uses strong approximations that often lead to significant errors in the interpretation of remote sensing measurements. The model developed in this thesis deals mainly with the radiative aspect. It is based on the DART radiative transfer model (https://dart.omp.eu). Based on the discrete ordinate method, DART-FT, the initial mode of DART, simulates the SIF emission and the remotely sensed SIF signal, but has computational requirements (i.e., memory, computational time) that are prohibitive for the simulation of large landscapes. The new mode of DART, called DART-Lux, solves this problem with a very efficient two-way Monte Carlo algorithm. To complement the functionality of DART-Lux, four original models have been designed and implemented. (1) Modeling of landscapes with turbid volumes and facets, as the "turbid" representation is often useful for simulating large landscapes. (2) Modeling of SIF emission and the SIF signal that is measured by satellite, airborne and in-situ sensors. It takes into account local bioclimatic conditions via a coupling with the SCOPE energy balance model. Applied to eight forest plots realistically reconstructed with LiDAR measurements, this modeling allowed one to study the impact of the 3D structure of the vegetation on the SIF emission and on the SIF observed by a sensor at nadir, from morning to evening. It highlighted that the relative error made by neglecting the 3D architecture of the canopies, as in the 1D models, is often greater than 30%, especially in the morning and evening when the solar direction is very oblique. 3) Modeling of remote sensing images corresponding to the thermal emission of the landscape. As DART is not an energy balance model, the 3D temperature distribution is imported or approximated via short-wave illumination. 4) 3D radiation balance modeling with the ability to simulate it by sub-scene and feature type. All of these modeling, with the exception of the radiation balance modeling, were found to be very accurate and efficient in terms of computation time and memory volume, with gains often greater than 100. The resulting new DART model opens very interesting perspectives for the study of land surfaces using remote sensing observations in the visible to thermal infrared range. This work is currently being pursued in order to take into account the multiple biophysical interactions within the canopies that condition their SIF emission and their 3D temperature.L'activitĂ© photosynthĂ©tique de la vĂ©gĂ©tation revĂȘt un intĂ©rĂȘt majeur compte tenu des prĂ©occupations environnementales actuelles comme le changement climatique et les ressources en eau. Dans ce processus, les molĂ©cules de chlorophylle excitĂ©es par absorption de rayonnement photosynthĂ©tiquement actif (PAR), dissipent une part de l'Ă©nergie non utilisĂ©e pour la photosynthĂšse sous forme de chaleur et de rayonnement de fluorescence (SIF) qui ainsi est un indicateur fiable et instantanĂ© de l'activitĂ© photosynthĂ©tique. Cependant, de nombreux facteurs compliquent l'interprĂ©tation des mesures de tĂ©lĂ©dĂ©tection en termes de SIF et donc d'activitĂ© photosynthĂ©tique. En particulier, l'architecture 3D de la vĂ©gĂ©tation affecte beaucoup la propagation du rayonnement, et donc l'absorption du PAR, l'Ă©mission de SIF dans le couvert vĂ©gĂ©tal, et la mesure de tĂ©lĂ©dĂ©tection. Une modĂ©lisation prĂ©cise de l'Ă©mission SIF et des mesures de tĂ©lĂ©dĂ©tection est donc essentielle pour interprĂ©ter avec prĂ©cision ces mesures en termes de SIF Ă©mis (i.e., activitĂ© photosynthĂ©tique) par la vĂ©gĂ©tation. De plus, elle doit ĂȘtre adaptĂ©e aux paysages complexes de grandes dimensions, du moins plus grands que la rĂ©solution des capteurs satellites concernĂ©s (e.g., 300m pour la prochaine mission satellite FLEX de l'ESA pour mesurer la SIF). Vu le nombre, complexitĂ© et diversitĂ© des termes Ă prendre en compte, cette modĂ©lisation utilise de fortes approximations qui induisent souvent de grandes erreurs lors de l'interprĂ©tation des mesures de tĂ©lĂ©dĂ©tection. La modĂ©lisation dĂ©veloppĂ©e dans cette thĂšse traite principalement de l'aspect radiatif. Elle s'appuie sur le modĂšle de transfert radiatif DART (https://dart.omp.eu). Le mode initial, DART-FT, de DART, basĂ© sur la mĂ©thode des ordonnĂ©es discrĂštes, simule l'Ă©mission SIF et le signal SIF mesurĂ© par tĂ©lĂ©dĂ©tection, mais a des besoins informatiques (i.e., volume mĂ©moire, temps de calcul) prohibitifs pour simuler de grands paysages. Le nouveau mode, appelĂ© DART-Lux, rĂ©sout ce problĂšme via un algorithme bidirectionnel Monte Carlo trĂšs efficace. Pour complĂ©ter les fonctionnalitĂ©s de DART-Lux, quatre modĂ©lisations originales ont Ă©tĂ© conçues et implĂ©mentĂ©es. (1) ModĂ©lisation de paysages avec des volumes turbides et des facettes, car la reprĂ©sentation "turbide" est souvent utile pour simuler de grands paysages. 2) ModĂ©lisation de l'Ă©mission et mesure satellite de la SIF, en tenant compte des conditions bioclimatiques locales via le couplage avec le modĂšle de bilan d'Ă©nergie SCOPE. A partir de huit parcelles forestiĂšres reconstruites de maniĂšre rĂ©aliste avec des mesures LiDAR, cette modĂ©lisation a permis d'Ă©tudier l'impact de la structure 3D de la vĂ©gĂ©tation sur la SIF Ă©mise et observĂ©e par un capteur au nadir, du matin au soir. Ainsi, l'erreur relative commise en nĂ©gligeant l'architecture3D des couverts, comme dans les modĂšles 1D, est souvent supĂ©rieure Ă 30%, surtout les matins et soirs quand la direction solaire est trĂšs oblique. 3) ModĂ©lisation des images de tĂ©lĂ©dĂ©tection correspondant Ă l'Ă©mission thermique du paysage. DART n'Ă©tant pas un modĂšle de bilan d'Ă©nergie, la distribution3D des tempĂ©ratures est importĂ©e ou calculĂ©e de maniĂšre approchĂ©e via un Ă©clairement dans les courtes longueurs d'onde. 4) ModĂ©lisation du bilan radiatif 3D avec possibilitĂ© de le simuler par sous scĂšne et par type d'Ă©lĂ©ment. Toutes ces modĂ©lisations, exceptĂ© la modĂ©lisation du bilan radiatif, se sont avĂ©rĂ©es trĂšs prĂ©cises et efficaces en termes de temps de calcul et de volume mĂ©moire, avec des gains souvent supĂ©rieurs Ă 100. La modĂ©lisation implĂ©mentĂ©e dans DART ouvre donc des perspectives trĂšs intĂ©ressantes pour l'Ă©tude des surfaces terrestres avec l'aide d'observations de tĂ©lĂ©dĂ©tection visible Ă infrarouge thermique. Ce travail est actuellement poursuivi, pour tenir compte des multiples interactions biophysiques qui au sein des couverts conditionnent leur Ă©mission SIF et tempĂ©rature 3D
Modeling radiative transfer of Sun-Induced Fluorescence, thermal emission and radiative budget of 3D vegetation canopies : towards a comprehensive 3D SIF model
L'activitĂ© photosynthĂ©tique de la vĂ©gĂ©tation revĂȘt un intĂ©rĂȘt majeur compte tenu des prĂ©occupations environnementales actuelles comme le changement climatique et les ressources en eau. Dans ce processus, les molĂ©cules de chlorophylle excitĂ©es par absorption de rayonnement photosynthĂ©tiquement actif (PAR), dissipent une part de l'Ă©nergie non utilisĂ©e pour la photosynthĂšse sous forme de chaleur et de rayonnement de fluorescence (SIF) qui ainsi est un indicateur fiable et instantanĂ© de l'activitĂ© photosynthĂ©tique. Cependant, de nombreux facteurs compliquent l'interprĂ©tation des mesures de tĂ©lĂ©dĂ©tection en termes de SIF et donc d'activitĂ© photosynthĂ©tique. En particulier, l'architecture 3D de la vĂ©gĂ©tation affecte beaucoup la propagation du rayonnement, et donc l'absorption du PAR, l'Ă©mission de SIF dans le couvert vĂ©gĂ©tal, et la mesure de tĂ©lĂ©dĂ©tection. Une modĂ©lisation prĂ©cise de l'Ă©mission SIF et des mesures de tĂ©lĂ©dĂ©tection est donc essentielle pour interprĂ©ter avec prĂ©cision ces mesures en termes de SIF Ă©mis (i.e., activitĂ© photosynthĂ©tique) par la vĂ©gĂ©tation. De plus, elle doit ĂȘtre adaptĂ©e aux paysages complexes de grandes dimensions, du moins plus grands que la rĂ©solution des capteurs satellites concernĂ©s (e.g., 300m pour la prochaine mission satellite FLEX de l'ESA pour mesurer la SIF). Vu le nombre, complexitĂ© et diversitĂ© des termes Ă prendre en compte, cette modĂ©lisation utilise de fortes approximations qui induisent souvent de grandes erreurs lors de l'interprĂ©tation des mesures de tĂ©lĂ©dĂ©tection. La modĂ©lisation dĂ©veloppĂ©e dans cette thĂšse traite principalement de l'aspect radiatif. Elle s'appuie sur le modĂšle de transfert radiatif DART (https://dart.omp.eu). Le mode initial, DART-FT, de DART, basĂ© sur la mĂ©thode des ordonnĂ©es discrĂštes, simule l'Ă©mission SIF et le signal SIF mesurĂ© par tĂ©lĂ©dĂ©tection, mais a des besoins informatiques (i.e., volume mĂ©moire, temps de calcul) prohibitifs pour simuler de grands paysages. Le nouveau mode, appelĂ© DART-Lux, rĂ©sout ce problĂšme via un algorithme bidirectionnel Monte Carlo trĂšs efficace. Pour complĂ©ter les fonctionnalitĂ©s de DART-Lux, quatre modĂ©lisations originales ont Ă©tĂ© conçues et implĂ©mentĂ©es. (1) ModĂ©lisation de paysages avec des volumes turbides et des facettes, car la reprĂ©sentation "turbide" est souvent utile pour simuler de grands paysages. 2) ModĂ©lisation de l'Ă©mission et mesure satellite de la SIF, en tenant compte des conditions bioclimatiques locales via le couplage avec le modĂšle de bilan d'Ă©nergie SCOPE. A partir de huit parcelles forestiĂšres reconstruites de maniĂšre rĂ©aliste avec des mesures LiDAR, cette modĂ©lisation a permis d'Ă©tudier l'impact de la structure 3D de la vĂ©gĂ©tation sur la SIF Ă©mise et observĂ©e par un capteur au nadir, du matin au soir. Ainsi, l'erreur relative commise en nĂ©gligeant l'architecture3D des couverts, comme dans les modĂšles 1D, est souvent supĂ©rieure Ă 30%, surtout les matins et soirs quand la direction solaire est trĂšs oblique. 3) ModĂ©lisation des images de tĂ©lĂ©dĂ©tection correspondant Ă l'Ă©mission thermique du paysage. DART n'Ă©tant pas un modĂšle de bilan d'Ă©nergie, la distribution3D des tempĂ©ratures est importĂ©e ou calculĂ©e de maniĂšre approchĂ©e via un Ă©clairement dans les courtes longueurs d'onde. 4) ModĂ©lisation du bilan radiatif 3D avec possibilitĂ© de le simuler par sous scĂšne et par type d'Ă©lĂ©ment. Toutes ces modĂ©lisations, exceptĂ© la modĂ©lisation du bilan radiatif, se sont avĂ©rĂ©es trĂšs prĂ©cises et efficaces en termes de temps de calcul et de volume mĂ©moire, avec des gains souvent supĂ©rieurs Ă 100. La modĂ©lisation implĂ©mentĂ©e dans DART ouvre donc des perspectives trĂšs intĂ©ressantes pour l'Ă©tude des surfaces terrestres avec l'aide d'observations de tĂ©lĂ©dĂ©tection visible Ă infrarouge thermique. Ce travail est actuellement poursuivi, pour tenir compte des multiples interactions biophysiques qui au sein des couverts conditionnent leur Ă©mission SIF et tempĂ©rature 3D.The photosynthetic activity of vegetation is of major interest given current environmental concerns such as climate change and water resources. In this process, chlorophyll molecules excited by absorption of photosynthetically active radiation (PAR), dissipate some of the energy not used for photosynthesis in the form of heat and fluorescence radiation (SIF) which turns out to be a reliable and instantaneous indicator of photosynthetic activity. However, many factors complicate the interpretation of remote sensing measurements in terms of SIF and thus photosynthetic activity. In particular, the 3D architecture of the vegetation greatly affects radiation propagation, and thus PAR absorption, SIF emission in the canopy, and the remote sensing measurement. Accurate modeling of SIF emission and remote sensing measurements is therefore essential to accurately interpret these measurements in terms of SIF emitted (i.e., photosynthetic activity) by the vegetation. Moreover, it must be adapted to complex landscapes of large dimensions, at least larger than the resolution of the relevant satellite sensors (e.g., 300m for the upcoming ESA FLEX satellite mission to measure SIF). Given the number, complexity and diversity of terms to be taken into account, this modeling uses strong approximations that often lead to significant errors in the interpretation of remote sensing measurements. The model developed in this thesis deals mainly with the radiative aspect. It is based on the DART radiative transfer model (https://dart.omp.eu). Based on the discrete ordinate method, DART-FT, the initial mode of DART, simulates the SIF emission and the remotely sensed SIF signal, but has computational requirements (i.e., memory, computational time) that are prohibitive for the simulation of large landscapes. The new mode of DART, called DART-Lux, solves this problem with a very efficient two-way Monte Carlo algorithm. To complement the functionality of DART-Lux, four original models have been designed and implemented. (1) Modeling of landscapes with turbid volumes and facets, as the "turbid" representation is often useful for simulating large landscapes. (2) Modeling of SIF emission and the SIF signal that is measured by satellite, airborne and in-situ sensors. It takes into account local bioclimatic conditions via a coupling with the SCOPE energy balance model. Applied to eight forest plots realistically reconstructed with LiDAR measurements, this modeling allowed one to study the impact of the 3D structure of the vegetation on the SIF emission and on the SIF observed by a sensor at nadir, from morning to evening. It highlighted that the relative error made by neglecting the 3D architecture of the canopies, as in the 1D models, is often greater than 30%, especially in the morning and evening when the solar direction is very oblique. 3) Modeling of remote sensing images corresponding to the thermal emission of the landscape. As DART is not an energy balance model, the 3D temperature distribution is imported or approximated via short-wave illumination. 4) 3D radiation balance modeling with the ability to simulate it by sub-scene and feature type. All of these modeling, with the exception of the radiation balance modeling, were found to be very accurate and efficient in terms of computation time and memory volume, with gains often greater than 100. The resulting new DART model opens very interesting perspectives for the study of land surfaces using remote sensing observations in the visible to thermal infrared range. This work is currently being pursued in order to take into account the multiple biophysical interactions within the canopies that condition their SIF emission and their 3D temperature
Modélisation du transfert radiatif de la fluorescence induite par le soleil, de l'émission thermique et du bilan radiatif des couverts végétaux 3D : vers un modÚle SIF complet
The photosynthetic activity of vegetation is of major interest given current environmental concerns such as climate change and water resources. In this process, chlorophyll molecules excited by absorption of photosynthetically active radiation (PAR), dissipate some of the energy not used for photosynthesis in the form of heat and fluorescence radiation (SIF) which turns out to be a reliable and instantaneous indicator of photosynthetic activity. However, many factors complicate the interpretation of remote sensing measurements in terms of SIF and thus photosynthetic activity. In particular, the 3D architecture of the vegetation greatly affects radiation propagation, and thus PAR absorption, SIF emission in the canopy, and the remote sensing measurement. Accurate modeling of SIF emission and remote sensing measurements is therefore essential to accurately interpret these measurements in terms of SIF emitted (i.e., photosynthetic activity) by the vegetation. Moreover, it must be adapted to complex landscapes of large dimensions, at least larger than the resolution of the relevant satellite sensors (e.g., 300m for the upcoming ESA FLEX satellite mission to measure SIF). Given the number, complexity and diversity of terms to be taken into account, this modeling uses strong approximations that often lead to significant errors in the interpretation of remote sensing measurements. The model developed in this thesis deals mainly with the radiative aspect. It is based on the DART radiative transfer model (https://dart.omp.eu). Based on the discrete ordinate method, DART-FT, the initial mode of DART, simulates the SIF emission and the remotely sensed SIF signal, but has computational requirements (i.e., memory, computational time) that are prohibitive for the simulation of large landscapes. The new mode of DART, called DART-Lux, solves this problem with a very efficient two-way Monte Carlo algorithm. To complement the functionality of DART-Lux, four original models have been designed and implemented. (1) Modeling of landscapes with turbid volumes and facets, as the "turbid" representation is often useful for simulating large landscapes. (2) Modeling of SIF emission and the SIF signal that is measured by satellite, airborne and in-situ sensors. It takes into account local bioclimatic conditions via a coupling with the SCOPE energy balance model. Applied to eight forest plots realistically reconstructed with LiDAR measurements, this modeling allowed one to study the impact of the 3D structure of the vegetation on the SIF emission and on the SIF observed by a sensor at nadir, from morning to evening. It highlighted that the relative error made by neglecting the 3D architecture of the canopies, as in the 1D models, is often greater than 30%, especially in the morning and evening when the solar direction is very oblique. 3) Modeling of remote sensing images corresponding to the thermal emission of the landscape. As DART is not an energy balance model, the 3D temperature distribution is imported or approximated via short-wave illumination. 4) 3D radiation balance modeling with the ability to simulate it by sub-scene and feature type. All of these modeling, with the exception of the radiation balance modeling, were found to be very accurate and efficient in terms of computation time and memory volume, with gains often greater than 100. The resulting new DART model opens very interesting perspectives for the study of land surfaces using remote sensing observations in the visible to thermal infrared range. This work is currently being pursued in order to take into account the multiple biophysical interactions within the canopies that condition their SIF emission and their 3D temperature.L'activitĂ© photosynthĂ©tique de la vĂ©gĂ©tation revĂȘt un intĂ©rĂȘt majeur compte tenu des prĂ©occupations environnementales actuelles comme le changement climatique et les ressources en eau. Dans ce processus, les molĂ©cules de chlorophylle excitĂ©es par absorption de rayonnement photosynthĂ©tiquement actif (PAR), dissipent une part de l'Ă©nergie non utilisĂ©e pour la photosynthĂšse sous forme de chaleur et de rayonnement de fluorescence (SIF) qui ainsi est un indicateur fiable et instantanĂ© de l'activitĂ© photosynthĂ©tique. Cependant, de nombreux facteurs compliquent l'interprĂ©tation des mesures de tĂ©lĂ©dĂ©tection en termes de SIF et donc d'activitĂ© photosynthĂ©tique. En particulier, l'architecture 3D de la vĂ©gĂ©tation affecte beaucoup la propagation du rayonnement, et donc l'absorption du PAR, l'Ă©mission de SIF dans le couvert vĂ©gĂ©tal, et la mesure de tĂ©lĂ©dĂ©tection. Une modĂ©lisation prĂ©cise de l'Ă©mission SIF et des mesures de tĂ©lĂ©dĂ©tection est donc essentielle pour interprĂ©ter avec prĂ©cision ces mesures en termes de SIF Ă©mis (i.e., activitĂ© photosynthĂ©tique) par la vĂ©gĂ©tation. De plus, elle doit ĂȘtre adaptĂ©e aux paysages complexes de grandes dimensions, du moins plus grands que la rĂ©solution des capteurs satellites concernĂ©s (e.g., 300m pour la prochaine mission satellite FLEX de l'ESA pour mesurer la SIF). Vu le nombre, complexitĂ© et diversitĂ© des termes Ă prendre en compte, cette modĂ©lisation utilise de fortes approximations qui induisent souvent de grandes erreurs lors de l'interprĂ©tation des mesures de tĂ©lĂ©dĂ©tection. La modĂ©lisation dĂ©veloppĂ©e dans cette thĂšse traite principalement de l'aspect radiatif. Elle s'appuie sur le modĂšle de transfert radiatif DART (https://dart.omp.eu). Le mode initial, DART-FT, de DART, basĂ© sur la mĂ©thode des ordonnĂ©es discrĂštes, simule l'Ă©mission SIF et le signal SIF mesurĂ© par tĂ©lĂ©dĂ©tection, mais a des besoins informatiques (i.e., volume mĂ©moire, temps de calcul) prohibitifs pour simuler de grands paysages. Le nouveau mode, appelĂ© DART-Lux, rĂ©sout ce problĂšme via un algorithme bidirectionnel Monte Carlo trĂšs efficace. Pour complĂ©ter les fonctionnalitĂ©s de DART-Lux, quatre modĂ©lisations originales ont Ă©tĂ© conçues et implĂ©mentĂ©es. (1) ModĂ©lisation de paysages avec des volumes turbides et des facettes, car la reprĂ©sentation "turbide" est souvent utile pour simuler de grands paysages. 2) ModĂ©lisation de l'Ă©mission et mesure satellite de la SIF, en tenant compte des conditions bioclimatiques locales via le couplage avec le modĂšle de bilan d'Ă©nergie SCOPE. A partir de huit parcelles forestiĂšres reconstruites de maniĂšre rĂ©aliste avec des mesures LiDAR, cette modĂ©lisation a permis d'Ă©tudier l'impact de la structure 3D de la vĂ©gĂ©tation sur la SIF Ă©mise et observĂ©e par un capteur au nadir, du matin au soir. Ainsi, l'erreur relative commise en nĂ©gligeant l'architecture3D des couverts, comme dans les modĂšles 1D, est souvent supĂ©rieure Ă 30%, surtout les matins et soirs quand la direction solaire est trĂšs oblique. 3) ModĂ©lisation des images de tĂ©lĂ©dĂ©tection correspondant Ă l'Ă©mission thermique du paysage. DART n'Ă©tant pas un modĂšle de bilan d'Ă©nergie, la distribution3D des tempĂ©ratures est importĂ©e ou calculĂ©e de maniĂšre approchĂ©e via un Ă©clairement dans les courtes longueurs d'onde. 4) ModĂ©lisation du bilan radiatif 3D avec possibilitĂ© de le simuler par sous scĂšne et par type d'Ă©lĂ©ment. Toutes ces modĂ©lisations, exceptĂ© la modĂ©lisation du bilan radiatif, se sont avĂ©rĂ©es trĂšs prĂ©cises et efficaces en termes de temps de calcul et de volume mĂ©moire, avec des gains souvent supĂ©rieurs Ă 100. La modĂ©lisation implĂ©mentĂ©e dans DART ouvre donc des perspectives trĂšs intĂ©ressantes pour l'Ă©tude des surfaces terrestres avec l'aide d'observations de tĂ©lĂ©dĂ©tection visible Ă infrarouge thermique. Ce travail est actuellement poursuivi, pour tenir compte des multiples interactions biophysiques qui au sein des couverts conditionnent leur Ă©mission SIF et tempĂ©rature 3D
Modélisation du transfert radiatif de la fluorescence induite par le soleil, de l'émission thermique et du bilan radiatif des couverts végétaux 3D : vers un modÚle SIF complet
The photosynthetic activity of vegetation is of major interest given current environmental concerns such as climate change and water resources. In this process, chlorophyll molecules excited by absorption of photosynthetically active radiation (PAR), dissipate some of the energy not used for photosynthesis in the form of heat and fluorescence radiation (SIF) which turns out to be a reliable and instantaneous indicator of photosynthetic activity. However, many factors complicate the interpretation of remote sensing measurements in terms of SIF and thus photosynthetic activity. In particular, the 3D architecture of the vegetation greatly affects radiation propagation, and thus PAR absorption, SIF emission in the canopy, and the remote sensing measurement. Accurate modeling of SIF emission and remote sensing measurements is therefore essential to accurately interpret these measurements in terms of SIF emitted (i.e., photosynthetic activity) by the vegetation. Moreover, it must be adapted to complex landscapes of large dimensions, at least larger than the resolution of the relevant satellite sensors (e.g., 300m for the upcoming ESA FLEX satellite mission to measure SIF). Given the number, complexity and diversity of terms to be taken into account, this modeling uses strong approximations that often lead to significant errors in the interpretation of remote sensing measurements. The model developed in this thesis deals mainly with the radiative aspect. It is based on the DART radiative transfer model (https://dart.omp.eu). Based on the discrete ordinate method, DART-FT, the initial mode of DART, simulates the SIF emission and the remotely sensed SIF signal, but has computational requirements (i.e., memory, computational time) that are prohibitive for the simulation of large landscapes. The new mode of DART, called DART-Lux, solves this problem with a very efficient two-way Monte Carlo algorithm. To complement the functionality of DART-Lux, four original models have been designed and implemented. (1) Modeling of landscapes with turbid volumes and facets, as the "turbid" representation is often useful for simulating large landscapes. (2) Modeling of SIF emission and the SIF signal that is measured by satellite, airborne and in-situ sensors. It takes into account local bioclimatic conditions via a coupling with the SCOPE energy balance model. Applied to eight forest plots realistically reconstructed with LiDAR measurements, this modeling allowed one to study the impact of the 3D structure of the vegetation on the SIF emission and on the SIF observed by a sensor at nadir, from morning to evening. It highlighted that the relative error made by neglecting the 3D architecture of the canopies, as in the 1D models, is often greater than 30%, especially in the morning and evening when the solar direction is very oblique. 3) Modeling of remote sensing images corresponding to the thermal emission of the landscape. As DART is not an energy balance model, the 3D temperature distribution is imported or approximated via short-wave illumination. 4) 3D radiation balance modeling with the ability to simulate it by sub-scene and feature type. All of these modeling, with the exception of the radiation balance modeling, were found to be very accurate and efficient in terms of computation time and memory volume, with gains often greater than 100. The resulting new DART model opens very interesting perspectives for the study of land surfaces using remote sensing observations in the visible to thermal infrared range. This work is currently being pursued in order to take into account the multiple biophysical interactions within the canopies that condition their SIF emission and their 3D temperature.L'activitĂ© photosynthĂ©tique de la vĂ©gĂ©tation revĂȘt un intĂ©rĂȘt majeur compte tenu des prĂ©occupations environnementales actuelles comme le changement climatique et les ressources en eau. Dans ce processus, les molĂ©cules de chlorophylle excitĂ©es par absorption de rayonnement photosynthĂ©tiquement actif (PAR), dissipent une part de l'Ă©nergie non utilisĂ©e pour la photosynthĂšse sous forme de chaleur et de rayonnement de fluorescence (SIF) qui ainsi est un indicateur fiable et instantanĂ© de l'activitĂ© photosynthĂ©tique. Cependant, de nombreux facteurs compliquent l'interprĂ©tation des mesures de tĂ©lĂ©dĂ©tection en termes de SIF et donc d'activitĂ© photosynthĂ©tique. En particulier, l'architecture 3D de la vĂ©gĂ©tation affecte beaucoup la propagation du rayonnement, et donc l'absorption du PAR, l'Ă©mission de SIF dans le couvert vĂ©gĂ©tal, et la mesure de tĂ©lĂ©dĂ©tection. Une modĂ©lisation prĂ©cise de l'Ă©mission SIF et des mesures de tĂ©lĂ©dĂ©tection est donc essentielle pour interprĂ©ter avec prĂ©cision ces mesures en termes de SIF Ă©mis (i.e., activitĂ© photosynthĂ©tique) par la vĂ©gĂ©tation. De plus, elle doit ĂȘtre adaptĂ©e aux paysages complexes de grandes dimensions, du moins plus grands que la rĂ©solution des capteurs satellites concernĂ©s (e.g., 300m pour la prochaine mission satellite FLEX de l'ESA pour mesurer la SIF). Vu le nombre, complexitĂ© et diversitĂ© des termes Ă prendre en compte, cette modĂ©lisation utilise de fortes approximations qui induisent souvent de grandes erreurs lors de l'interprĂ©tation des mesures de tĂ©lĂ©dĂ©tection. La modĂ©lisation dĂ©veloppĂ©e dans cette thĂšse traite principalement de l'aspect radiatif. Elle s'appuie sur le modĂšle de transfert radiatif DART (https://dart.omp.eu). Le mode initial, DART-FT, de DART, basĂ© sur la mĂ©thode des ordonnĂ©es discrĂštes, simule l'Ă©mission SIF et le signal SIF mesurĂ© par tĂ©lĂ©dĂ©tection, mais a des besoins informatiques (i.e., volume mĂ©moire, temps de calcul) prohibitifs pour simuler de grands paysages. Le nouveau mode, appelĂ© DART-Lux, rĂ©sout ce problĂšme via un algorithme bidirectionnel Monte Carlo trĂšs efficace. Pour complĂ©ter les fonctionnalitĂ©s de DART-Lux, quatre modĂ©lisations originales ont Ă©tĂ© conçues et implĂ©mentĂ©es. (1) ModĂ©lisation de paysages avec des volumes turbides et des facettes, car la reprĂ©sentation "turbide" est souvent utile pour simuler de grands paysages. 2) ModĂ©lisation de l'Ă©mission et mesure satellite de la SIF, en tenant compte des conditions bioclimatiques locales via le couplage avec le modĂšle de bilan d'Ă©nergie SCOPE. A partir de huit parcelles forestiĂšres reconstruites de maniĂšre rĂ©aliste avec des mesures LiDAR, cette modĂ©lisation a permis d'Ă©tudier l'impact de la structure 3D de la vĂ©gĂ©tation sur la SIF Ă©mise et observĂ©e par un capteur au nadir, du matin au soir. Ainsi, l'erreur relative commise en nĂ©gligeant l'architecture3D des couverts, comme dans les modĂšles 1D, est souvent supĂ©rieure Ă 30%, surtout les matins et soirs quand la direction solaire est trĂšs oblique. 3) ModĂ©lisation des images de tĂ©lĂ©dĂ©tection correspondant Ă l'Ă©mission thermique du paysage. DART n'Ă©tant pas un modĂšle de bilan d'Ă©nergie, la distribution3D des tempĂ©ratures est importĂ©e ou calculĂ©e de maniĂšre approchĂ©e via un Ă©clairement dans les courtes longueurs d'onde. 4) ModĂ©lisation du bilan radiatif 3D avec possibilitĂ© de le simuler par sous scĂšne et par type d'Ă©lĂ©ment. Toutes ces modĂ©lisations, exceptĂ© la modĂ©lisation du bilan radiatif, se sont avĂ©rĂ©es trĂšs prĂ©cises et efficaces en termes de temps de calcul et de volume mĂ©moire, avec des gains souvent supĂ©rieurs Ă 100. La modĂ©lisation implĂ©mentĂ©e dans DART ouvre donc des perspectives trĂšs intĂ©ressantes pour l'Ă©tude des surfaces terrestres avec l'aide d'observations de tĂ©lĂ©dĂ©tection visible Ă infrarouge thermique. Ce travail est actuellement poursuivi, pour tenir compte des multiples interactions biophysiques qui au sein des couverts conditionnent leur Ă©mission SIF et tempĂ©rature 3D
Bi-directional Monte-Carlo modelling of solar-induced chlorophyll fluorescence images for 3D vegetation canopies in the DART model
Remote sensing (RS) of solar-induced chlorophyll fluorescence (SIF) has a great potential for monitoring plant photosynthetic activity. Radiative transfer models (RTM) are essential to better interpret and extract information from SIF signals. DART is one of the most comprehensive and accurate 3D RTMs. Its standard mode DART-FT simulates SIF using a discrete ordinates method but is not adapted to large landscapes due to computational constraints. DART-Lux, the new mode based on a bi-directional path tracing algorithm, greatly improves DART computational efficiency for simulating images. This paper presents the theory of a novel SIF modelling algorithm in DART-Lux. We verified its accuracy with DART-FT and the SCOPE model for three types of canopies: turbid medium, maize field and forest. DART-Lux closely matches DART-FT (relative difference < 2%) with much better computational efficiency depending on the scene complexity, number of spectral bands and needed accuracy. For example, simulation time is reduced by a factor of â48, and memory usage by â50 for a maize field at 1 cm resolution. It allowed to simulate SIF images of large scenes as the 3Ă3km2 Ripperdan agricultural site that DART-FT could not simulate. The new SIF modelling algorithm opens new horizons for RS studies of large and complex landscapes. It is available as part of released DART versions (v1152 onwards) (https://dart.omp.eu/)
Assessing impacts of canopy 3D structure on chlorophyll fluorescence radiance and radiative budget of deciduous forest stands using DART
International audienc
DART-Lux: an unbiased and rapid Monte Carlo radiative transfer method for simulating remote sensing images
International audienceAccurate and efficient simulation of remote sensing images is increasingly needed in order to better exploit remote sensing observations and to better design remote sensing missions. DART (Discrete Anisotropic Radiative Transfer), developed since 1992 based on the discrete ordinates method (i.e., standard mode DART-FT), is one of the most accurate and comprehensive 3D radiative transfer models to simulate the radiative budget and remote sensing observations of urban and natural landscapes. Recently, a new method, called DART-Lux, was integrated into DART model to address the requirements of massive remote sensing data simulation for large-scale and complex landscapes. It is developed based on efficient Monte Carlo light transport algorithms (i.e., bidirectional path tracing) and on DART model framework. DART-Lux can accurately and rapidly simulate the bidirectional reflectance factor (BRF) and spectral images of arbitrary landscapes. This paper presents its theory, implementation, and evaluation. Its accuracy, efficiency and advantages are also discussed. The comparison with standard DART-FT in a variety of scenarios shows that DART-Lux is consistent with DART-FT (relative differences <1%) with simulation time and memory reduced by a hundredfold. DART-Lux is already part of the DART version freely available for scientists (https://dart.omp.eu)