17,206 research outputs found

    Local energy decay of massive Dirac fields in the 5D Myers-Perry metric

    Full text link
    We consider massive Dirac fields evolving in the exterior region of a 5-dimensional Myers-Perry black hole and study their propagation properties. Our main result states that the local energy of such fields decays in a weak sense at late times. We obtain this result in two steps: first, using the separability of the Dirac equation, we prove the absence of a pure point spectrum for the corresponding Dirac operator; second, using a new form of the equation adapted to the local rotations of the black hole, we show by a Mourre theory argument that the spectrum is absolutely continuous. This leads directly to our main result.Comment: 40 page

    Ionization of Atoms by Intense Laser Pulses

    Full text link
    The process of ionization of a hydrogen atom by a short infrared laser pulse is studied in the regime of very large pulse intensity, in the dipole approximation. Let AA denote the integral of the electric field of the pulse over time at the location of the atomic nucleus. It is shown that, in the limit where ∣A∣→∞|A| \to \infty, the ionization probability approaches unity and the electron is ejected into a cone opening in the direction of −A-A and of arbitrarily small opening angle. Asymptotics of various physical quantities in ∣A∣−1|A|^{-1} is studied carefully. Our results are in qualitative agreement with experimental data reported in \cite{1,2}.Comment: 27 pages, 1 figure

    The Berry-Keating operator on L^2(\rz_>, x) and on compact quantum graphs with general self-adjoint realizations

    Full text link
    The Berry-Keating operator H_{\mathrm{BK}}:= -\ui\hbar(x\frac{ \phantom{x}}{ x}+{1/2}) [M. V. Berry and J. P. Keating, SIAM Rev. 41 (1999) 236] governing the Schr\"odinger dynamics is discussed in the Hilbert space L^2(\rz_>, x) and on compact quantum graphs. It is proved that the spectrum of HBKH_{\mathrm{BK}} defined on L^2(\rz_>, x) is purely continuous and thus this quantization of HBKH_{\mathrm{BK}} cannot yield the hypothetical Hilbert-Polya operator possessing as eigenvalues the nontrivial zeros of the Riemann zeta function. A complete classification of all self-adjoint extensions of HBKH_{\mathrm{BK}} acting on compact quantum graphs is given together with the corresponding secular equation in form of a determinant whose zeros determine the discrete spectrum of HBKH_{\mathrm{BK}}. In addition, an exact trace formula and the Weyl asymptotics of the eigenvalue counting function are derived. Furthermore, we introduce the "squared" Berry-Keating operator HBK2:=−x22xx2−2xxx−1/4H_{\mathrm{BK}}^2:= -x^2\frac{ ^2\phantom{x}}{ x^2}-2x\frac{ \phantom{x}}{ x}-{1/4} which is a special case of the Black-Scholes operator used in financial theory of option pricing. Again, all self-adjoint extensions, the corresponding secular equation, the trace formula and the Weyl asymptotics are derived for HBK2H_{\mathrm{BK}}^2 on compact quantum graphs. While the spectra of both HBKH_{\mathrm{BK}} and HBK2H_{\mathrm{BK}}^2 on any compact quantum graph are discrete, their Weyl asymptotics demonstrate that neither HBKH_{\mathrm{BK}} nor HBK2H_{\mathrm{BK}}^2 can yield as eigenvalues the nontrivial Riemann zeros. Some simple examples are worked out in detail.Comment: 33p

    Whirling Waves and the Aharonov-Bohm Effect for Relativistic Spinning Particles

    Get PDF
    The formulation of Berry for the Aharonov-Bohm effect is generalized to the relativistic regime. Then, the problem of finding the self-adjoint extensions of the (2+1)-dimensional Dirac Hamiltonian, in an Aharonov-Bohm background potential, is solved in a novel way. The same treatment also solves the problem of finding the self-adjoint extensions of the Dirac Hamiltonian in a background Aharonov-Casher

    Determination of cobalt in seawater

    Get PDF
    Cobalt has been isolated from seawater by cocrystallization with α-nitroso-β-naphthol. Quantitative determination by a nitroso-R-salt method for each of two sea.water samples has indicated the cobalt content to be 0.038 µg/l after radiometric correction for losses incurred in the isolation process

    Observables and a Hilbert Space for Bianchi IX

    Get PDF
    We consider a quantization of the Bianchi IX cosmological model based on taking the constraint to be a self-adjoint operator in an auxiliary Hilbert space. Using a WKB-style self-consistent approximation, the constraint chosen is shown to have only continuous spectrum at zero. Nevertheless, the auxiliary space induces an inner product on the zero-eigenvalue generalized eigenstates such that the resulting physical Hilbert space has countably infinite dimension. In addition, a complete set of gauge-invariant operators on the physical space is constructed by integrating differential forms over the spacetime. The behavior of these operators indicates that this quantization preserves Wald's classical result that the Bianchi IX spacetimes expand to a maximum volume and then recollapse.Comment: 23 pages, ReVTeX, CGPG-94/6-3, UCSBTH-94-3

    Homogenization of the planar waveguide with frequently alternating boundary conditions

    Full text link
    We consider Laplacian in a planar strip with Dirichlet boundary condition on the upper boundary and with frequent alternation boundary condition on the lower boundary. The alternation is introduced by the periodic partition of the boundary into small segments on which Dirichlet and Neumann conditions are imposed in turns. We show that under the certain condition the homogenized operator is the Dirichlet Laplacian and prove the uniform resolvent convergence. The spectrum of the perturbed operator consists of its essential part only and has a band structure. We construct the leading terms of the asymptotic expansions for the first band functions. We also construct the complete asymptotic expansion for the bottom of the spectrum

    Weyl asymptotics for magnetic Schr\"odinger operators and de Gennes' boundary condition

    Full text link
    This paper is concerned with the discrete spectrum of the self-adjoint realization of the semi-classical Schr\"odinger operator with constant magnetic field and associated with the de Gennes (Fourier/Robin) boundary condition. We derive an asymptotic expansion of the number of eigenvalues below the essential spectrum (Weyl-type asymptotics). The methods of proof relies on results concerning the asymptotic behavior of the first eigenvalue obtained in a previous work [A. Kachmar, J. Math. Phys. Vol. 47 (7) 072106 (2006)].Comment: 28 pages (revised version). to appear in Rev Math Phy

    A linear-time algorithm for finding a complete graph minor in a dense graph

    Full text link
    Let g(t) be the minimum number such that every graph G with average degree d(G) \geq g(t) contains a K_{t}-minor. Such a function is known to exist, as originally shown by Mader. Kostochka and Thomason independently proved that g(t) \in \Theta(t*sqrt{log t}). This article shows that for all fixed \epsilon > 0 and fixed sufficiently large t \geq t(\epsilon), if d(G) \geq (2+\epsilon)g(t) then we can find this K_{t}-minor in linear time. This improves a previous result by Reed and Wood who gave a linear-time algorithm when d(G) \geq 2^{t-2}.Comment: 6 pages, 0 figures; Clarification added in several places, no change to arguments or result

    Conceptual inconsistencies in finite-dimensional quantum and classical mechanics

    Full text link
    Utilizing operational dynamic modeling [Phys. Rev. Lett. 109, 190403 (2012); arXiv:1105.4014], we demonstrate that any finite-dimensional representation of quantum and classical dynamics violates the Ehrenfest theorems. Other peculiarities are also revealed, including the nonexistence of the free particle and ambiguity in defining potential forces. Non-Hermitian mechanics is shown to have the same problems. This work compromises a popular belief that finite-dimensional mechanics is a straightforward discretization of the corresponding infinite-dimensional formulation.Comment: 5 pages, 2 figure
    • …
    corecore