41 research outputs found

    Targeted delivery of C/EBPα -saRNA by pancreatic ductal adenocarcinoma-specific RNA aptamers inhibits tumor growth in vivo

    No full text
    The 5-year survival rate for pancreatic ductal adenocarcinoma (PDAC) remains dismal despite current chemotherapeutic agents and inhibitors of molecular targets. As the incidence of PDAC constantly increases, more effective multidrug approaches must be made. Here, we report a novel method of delivering antitumorigenic therapy in PDAC by upregulating the transcriptional factor CCAAT/enhancer-binding protein-α (C/EBPα), recognized for its antiproliferative effects. Small activating RNA (saRNA) duplexes designed to increase C/EBPα expression were linked onto PDAC-specific 2′-Fluropyrimidine RNA aptamers (2′F-RNA) - P19 and P1 for construction of a cell type–specific delivery vehicle. Both P19- and P1-C/EBPα-saRNA conjugates increased expression of C/EBPα and significantly suppressed cell proliferation. Tail vein injection of the saRNA/aptamer conjugates in PANC-1 and in gemcitabine-resistant AsPC-1 mouse-xenografts led to reduced tumor size with no observed toxicity. To exploit the specificity of the P19/P1 aptamers for PDAC cells, we also assessed if conjugation with Cy3 would allow it to be used as a diagnostic tool on archival human pancreatic duodenectomy tissue sections. Scoring pattern from 72 patients suggested a positive correlation between high fluorescent signal in the high mortality patient groups. We propose a novel aptamer-based strategy for delivery of targeted molecular therapy in advanced PDAC where current modalities fail

    Identification of Stage-Specific Breast Markers using Quantitative Proteomics

    Get PDF
    YesMatched healthy and diseased tissues from breast cancer patients were analyzed by quantitative proteomics. By comparing proteomic profiles of fibroadenoma (benign tumors, three patients), DCIS (noninvasive cancer, three patients), and invasive ductal carcinoma (four patients), we identified protein alterations that correlated with breast cancer progression. Three 8-plex iTRAQ experiments generated an average of 826 protein identifications, of which 402 were common. After excluding those originating from blood, 59 proteins were significantly changed in tumor compared with normal tissues, with the majority associated with invasive carcinomas. Bioinformatics analysis identified relationships between proteins in this subset including roles in redox regulation, lipid transport, protein folding, and proteasomal degradation, with a substantial number increased in expression due to Myc oncogene activation. Three target proteins, cofilin-1 and p23 (increased in invasive carcinoma) and membrane copper amine oxidase 3 (decreased in invasive carcinoma), were subjected to further validation. All three were observed in phenotype-specific breast cancer cell lines, normal (nontransformed) breast cell lines, and primary breast epithelial cells by Western blotting, but only cofilin-1 and p23 were detected by multiple reaction monitoring mass spectrometry analysis. All three proteins were detected by both analytical approaches in matched tissue biopsies emulating the response observed with proteomics analysis. Tissue microarray analysis (361 patients) indicated cofilin-1 staining positively correlating with tumor grade and p23 staining with ER positive status; both therefore merit further investigation as potential biomarkers.Cyprus Research Promotion Foundation, Yorkshire Cancer Researc

    Targeted delivery of C/EBP alpha-saRNA by RNA aptamers shows anti-tumor effects in a mouse model of advanced PDAC

    No full text
    Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies; it preferentially metastasizes to the liver and is the main cause of death from this disease. In previous studies, small activating RNA against CCAAT/enhancer-binding protein-α (C/EBPα-saRNA) demonstrated efficacy of PDAC in a local subcutaneous tumor model. In this study, we focused on the efficacy of C/EBPα-saRNA in advanced stage PDAC. For targeted delivery, we selected a new anti-transferrin receptor aptamer (TR14), which demonstrated a high binding affinity to target proteins. The TR14 aptamer was internalized with clathrin-mediated endocytosis, distributed in early endosome, late endosome, and lysosome subcellularly. To investigate its anti-tumor effects to advanced PDAC, we conjugated C/EBPα-saRNA to TR14. Treatment of pancreatic cancer cells with the conjugates upregulated expression of C/EBPα and its downstream target p21, and inhibited cell proliferation. For in vivo assays, we established an advanced PDAC mouse model by engrafting luciferase reporter-PANC-1 cells directly into the livers of non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice. After treatment of aptamer-C/EBPα conjugates, we observed significant reduction of tumor growth in this advanced PDAC mouse model. Combinational treatment of the conjugates with gemcitabine also demonstrated enhanced anti-tumor effects in advanced PDAC. This suggests that aptamer-C/EBPα conjugates could be used as an adjuvant, along with other conventional anti-cancer drugs in advanced PDAC. In conclusion, targeted delivery of C/EBPα-saRNAs by aptamers might have potential therapeutic effects in advanced PDAC

    A short-activating RNA oligonucleotide targeting the islet beta-cell transcriptional factor MafA in CD34(+) cells

    Get PDF
    Upon functional loss of insulin producing islet β-cells, some patients with diabetes become dependent on life-long insulin supplementation therapy. Bioengineering surrogate insulin producing cells is an alternative replacement strategy. We have developed a novel approach using short-activating RNA oligonucleotides to differentiate adult human CD34+ cells into insulin-secreting cells. By transfecting RNA to increase transcript levels of the master regulator of insulin biosynthesis, v-maf musculoaponeurotic fibrosarcoma oncogene homolog A (MafA), several pancreatic endodermal genes were upregulated during the differentiation procedure. These included Pancreatic and duodenal homeobox gene-1 (PDX1), Neurogenin 3, NeuroD, and NK6 homeobox 1 (NKx6-1). Differentiated CD34+ cells also expressed glucokinase, glucagon-like peptide 1 receptor (GLP1R), sulfonylurea receptor-1 (SUR1) and phogrin'all essential for glucose sensitivity and insulin secretion. The differentiated cells appropriately processed C-peptide and insulin in response to increasing glucose stimulation as shown by enzyme-linked immunosorbent assay (ELISA), fluorescence-activated cell sorting analysis, western blotting, and immunofluorescence staining. We provide a new approach using short-activating RNA in developing insulin producing surrogate cells for treating diabetes

    MicroRNA-181a* targets Nanog in a subpopulation of CD34+ cells isolated from peripheral blood

    Get PDF
    Exploiting the properties of stem cells by microRNA (miRNA) profiling offers an attractive approach to identify new regulators of stem cell fate. Although numerous miRNA have been screened from hematopoietic stem cells (HSC), the targets corresponding to many of these miRNA have not yet been fully elucidated. By miRNA profiling in a subpopulation of CD34+ cells isolated from peripheral blood, we have identified eight clusters of miRNA that were differentially expressed. Further analysis of one of the clusters by bioinformatics revealed that a miRNA, miR-181a*, which is highly expressed in the adherent CD34+ cells, affects the expression levels of Nanog, a stem cell surrogate marker. We show specifically by reporter assay and mutational analysis that miR-181a* targets a seedless 3′ compensatory site in the 3′UTR of Nanog and affects gene expression. We demonstrate that inhibiting miR-181a* upregulates the Nanog expression level, in addition to an increase in alkaline phosphatase activity. Our studies suggest that miR-181a* may be important in controlling the expression level of Nanog in a subpopulation of CD34+ cells
    corecore