24 research outputs found
Selected Schizosaccharomyces pombe Strains Have Characteristics That Are Beneficial for Winemaking
At present, wine is generally produced using Saccharomyces yeast followed by Oenococus bacteria to complete malolactic fermentation. This method has some unsolved problems, such as the management of highly acidic musts and the production of potentially toxic products including biogenic amines and ethyl carbamate. Here we explore the potential of the fission yeast Schizosaccharomyces pombe to solve these problems. We characterise an extensive worldwide collection of S. pombe strains according to classic biochemical parameters of oenological interest. We identify three genetically different S. pombe strains that appear suitable for winemaking. These strains compare favourably to standard Saccharomyces cerevisiae winemaking strains, in that they perform effective malic acid deacidification and significantly reduce levels of biogenic amines and ethyl carbamate precursors without the need for any secondary bacterial malolactic fermentation. These findings indicate that the use of certain S. pombe strains could be advantageous for winemaking in regions where malic acid is problematic, and these strains also show superior performance with respect to food safety
Phenotypic and genotypic diversity of wine yeasts used for acidic musts
The aim of this study was to examine the physiological and genetic stability of the industrial wine yeasts Saccharomyces cerevisiae and Saccharomyces bayanus var. uvarum under acidic stress during fermentation. The yeasts were sub-cultured in aerobic or fermentative conditions in media with or without l-malic acid. Changes in the biochemical profiles, karyotypes, and mitochondrial DNA profiles were assessed after minimum 50 generations. All yeast segregates showed a tendency to increase the range of compounds used as sole carbon sources. The wild strains and their segregates were aneuploidal or diploidal. One of the four strains of S. cerevisiae did not reveal any changes in the electrophoretic profiles of chromosomal and mitochondrial DNA, irrespective of culture conditions. The extent of genomic changes in the other yeasts was strain-dependent. In the karyotypes of the segregates, the loss of up to 2 and the appearance up to 3 bands was noted. The changes in their mtDNA patterns were much broader, reaching 5 missing and 10 additional bands. The only exception was S. bayanus var. uvarum Y.00779, characterized by significantly greater genome plasticity only under fermentative stress. Changes in karyotypes and mtDNA profiles prove that fermentative stress is the main driving force of the adaptive evolution of the yeasts. l-malic acid does not influence the extent of genomic changes and the resistance of wine yeasts exhibiting increased demalication activity to acidic stress is rather related to their ability to decompose this acid. The phenotypic changes in segregates, which were found even in yeasts that did not reveal deviations in their DNA profiles, show that phenotypic characterization may be misleading in wine yeast identification. Because of yeast gross genomic diversity, karyotyping even though it does not seem to be a good discriminative tool, can be useful in determining the stability of wine yeasts. Restriction analysis of mitochondrial DNA appears to be a more sensitive method allowing for an early detection of genotypic changes in yeasts. Thus, if both of these methods are applied, it is possible to conduct the quick routine assessment of wine yeast stability in pure culture collections depositing industrial strains
Identification and characterisation of <I>Saccharomyces paradoxus </I>and <I>Saccharomyces cerevisiae</I> strains isolated from vineyards
AgriwetenskappeInstituut Vir WynbiotegnologiePlease help us populate SUNScholar with the post print version of this article. It can be e-mailed to: [email protected]
Bacterial communities associated with the production of artisanal Istrian cheese.
In this work we report on the main bacterial microflora typical for fermentation and ripening of traditional Istrian cheese. Samples from milk as well as Istrian cheese were analyzed during the ripening process by using culture independent molecular fingerprinting methods as well as culture based approaches. Our results indicate changes in bacterial diversity pattern during the ripening process. Differences in bacterial diversity at the same ripening stage among different farms investigated were comparably low. Sequence analysis of the most prominent bands of denaturing gradient gel electrophoresis fingerprints revealed dominance of Lactococcus lactis subs. lactis in all samples and a strong presence of Enterococcus spp. which was also confirmed by plate count analysis
Culture-independent quantitative approach to monitoring the dynamics of bacterial population during Istrian cheese ripening.
In order to preserve the specificity of artisanal cheese and to minimize variations in quality, real-time PCR can be applied to monitor the dynamics of autochthonous bacterial population throughout ripening. This may give the basis for the selection of species and strains that can be used to deliver safe products with balanced texture and flavour, and moreover, it can be applied to monitor the abundance of slow-growing or nonculturable species. The aim of this study is to evaluate the application of real-time PCR and plate count analysis in order to follow the dynamics of lactic acid bacteria (LAB) and enterobacteria during the ripening of traditional Istrian cheese. The abundance of all LAB was increased by prolonging the ripening time and reached the plateau after 90 days. The present study demonstrated that Lactococcus counts were closest to total bacterial count irrespective of the applied method, confirming Lactococcus spp. as one of the dominant bacterial groups associated with the ripening of Istrian cheese. Enterobacteria were mainly present at early phases of cheese ripening, whereas at later time a decrease was visible in samples from all farms
Differential malic acid degradation by selected strains of <I>Saccharomyces</I> during alcoholic fermentation
NatuurwetenskappeMikrobiologiePlease help us populate SUNScholar with the post print version of this article. It can be e-mailed to: [email protected]
Differential malic acid degradation by selected strains of Saccharomyces during alcoholic fermentation
To produce a high-quality wine, it is important to obtain a fine balance between the various chemical constituents, especially between the sugar and acid content. The latter is more difficult to achieve in wines that have high acidity due to excess malic acid, since wine yeast in general cannot effectively degrade malic acid during alcoholic fermentation. An indigenous Saccharomyces paradoxus strain RO88 was able to degrade 38% of the malic acid in Chardonnay must and produced a wine of good quality. In comparison, Schizosaccharomyces pombe strain F effectively removed 90% of the malic acid, but did not produce a good-quality wine. Although commercially promoted as a malic-acid-degrading wine yeast strain, only 18% of the malic acid was degraded by Saccharomyces cerevisiae Lalvin strain 71B. Preliminary studies on the transcriptional regulation of the malic enzyme gene from three Saccharomyces strains, i.e. S. paradoxus RO88, S. cerevisiae 71B and Saccharomyces bayanus EC1118, were undertaken to elucidate the differences in their ability to degrade malic acid. Expression of the malic enzyme gene from S. paradoxus RO88 and S. cerevisiae 71B increased towards the end of fermentation once glucose was depleted, whereas no increase in transcription was observed for S. bayanus EC1118 which was also unable to effectively degrade malic acid. © 2002 Elsevier Science B.V. All rights reserved.Articl