47 research outputs found

    Nicotinic acetylcholine receptors modulate osteoclastogenesis

    Get PDF
    Background: Our aim was to investigate the role of nicotinic acetylcholine receptors (nAChRs) in in-vitro osteoclastogenesis and in in-vivo bone homeostasis. Methods: The presence of nAChR subunits as well as the in-vitro effects of nAChR agonists were investigated by ex vivo osteoclastogenesis assays, real-time polymerase chain reaction, Western blot and flow cytometry in murine bone marrow-derived macrophages differentiated in the presence of recombinant receptor activator of nuclear factor kappa B ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). The bone phenotype of mice lacking various nAChR subunits was investigated by peripheral quantitative computed tomography and histomorphometric analysis. Oscillations in the intracellular calcium concentration were detected by measuring the Fura-2 fluorescence intensity. Results: We could demonstrate the presence of several nAChR subunits in bone marrow-derived macrophages stimulated with RANKL and M-CSF, and showed that they are capable of producing acetylcholine. nAChR ligands reduced the number of osteoclasts as well as the number of tartrate-resistant acidic phosphatase-positive mononuclear cells in a dose-dependent manner. In vitro RANKL-mediated osteoclastogenesis was reduced in mice lacking α7 homomeric nAChR or β2-containing heteromeric nAChRs, while bone histomorphometry revealed increased bone volume as well as impaired osteoclastogenesis in male mice lacking the α7 nAChR. nAChR ligands inhibited RANKL-induced calcium oscillation, a well-established phenomenon of osteoclastogenesis. This inhibitory effect on Ca2+ oscillation subsequently led to the inhibition of RANKL-induced NFATc1 and c-fos expression after long-term treatment with nicotine. Conclusions: We have shown that the activity of nAChRs conveys a marked effect on osteoclastogenesis in mice. Agonists of these receptors inhibited calcium oscillations in osteoclasts and blocked the RANKL-induced activation of c-fos and NFATc1. RANKL-mediated in-vitro osteoclastogenesis was reduced in α7 knockout mice, which was paralleled by increased tibial bone volume in male mice in vivo. © 2016 Mandl et al

    Infliximab: 12 years of experience

    Get PDF
    Rheumatoid arthritis (RA), ankylosing spondylitis (AS) and psoriatic arthritis (PsA) are immune-mediated conditions that share an inflammatory mechanism fuelled by excessive cytokines, particularly TNF. Control of inflammation and rapid suppression of cytokines are important in treating these diseases. With this understanding and the corresponding advent of TNF inhibitors, RA patients, AS patients and PsA patients have found more choices than ever before and have greater hope of sustained relief. As a widely used TNF inhibitor, infliximab has a deep and established record of efficacy and safety data. Extensive evidence - from randomised controlled clinical trials, large registries and postmarketing surveillance studies - shows that infliximab effectively treats the signs and symptoms, provides rapid and prolonged suppression of inflammation, prevents radiologically observable disease progression and offers an acceptable safety profile in RA, AS and PsA. In very recent studies, investigators have observed drug-free remission in some patients. Additionally, infliximab may interfere with rapidly progressing disease in RA by early addition to methotrexate in patients with signs of an aggressive course. Finally, infliximab has been shown to reduce PsA clinical manifestations such as nail involvement. With our current understanding, substantial data and increasing confidence regarding use in practice, infliximab can be considered a well-known drug in our continued campaign against inflammatory rheumatic diseases
    corecore