179 research outputs found
Possible loss and recovery of Gibbsianness during the stochastic evolution of Gibbs measures
We consider Ising-spin systems starting from an initial Gibbs measure
and evolving under a spin-flip dynamics towards a reversible Gibbs measure
. Both and are assumed to have a finite-range
interaction. We study the Gibbsian character of the measure at time
and show the following: (1) For all and , is Gibbs
for small . (2) If both and have a high or infinite temperature,
then is Gibbs for all . (3) If has a low non-zero
temperature and a zero magnetic field and has a high or infinite
temperature, then is Gibbs for small and non-Gibbs for large
. (4) If has a low non-zero temperature and a non-zero magnetic field
and has a high or infinite temperature, then is Gibbs for
small , non-Gibbs for intermediate , and Gibbs for large . The regime
where has a low or zero temperature and is not small remains open.
This regime presumably allows for many different scenarios
Large Deviations in Stochastic Heat-Conduction Processes Provide a Gradient-Flow Structure for Heat Conduction
We consider three one-dimensional continuous-time Markov processes on a
lattice, each of which models the conduction of heat: the family of Brownian
Energy Processes with parameter , a Generalized Brownian Energy Process, and
the Kipnis-Marchioro-Presutti process. The hydrodynamic limit of each of these
three processes is a parabolic equation, the linear heat equation in the case
of the BEP and the KMP, and a nonlinear heat equation for the GBEP().
We prove the hydrodynamic limit rigorously for the BEP, and give a formal
derivation for the GBEP().
We then formally derive the pathwise large-deviation rate functional for the
empirical measure of the three processes. These rate functionals imply
gradient-flow structures for the limiting linear and nonlinear heat equations.
We contrast these gradient-flow structures with those for processes describing
the diffusion of mass, most importantly the class of Wasserstein gradient-flow
systems. The linear and nonlinear heat-equation gradient-flow structures are
each driven by entropy terms of the form ; they involve dissipation
or mobility terms of order for the linear heat equation, and a
nonlinear function of for the nonlinear heat equation.Comment: 29 page
Stretched Exponential Relaxation in the Biased Random Voter Model
We study the relaxation properties of the voter model with i.i.d. random
bias. We prove under mild condions that the disorder-averaged relaxation of
this biased random voter model is faster than a stretched exponential with
exponent , where depends on the transition rates
of the non-biased voter model. Under an additional assumption, we show that the
above upper bound is optimal. The main ingredient of our proof is a result of
Donsker and Varadhan (1979).Comment: 14 pages, AMS-LaTe
Limiting shapes for deterministic centrally seeded growth models
We study the rotor router model and two deterministic sandpile models. For
the rotor router model in , Levine and Peres proved that the
limiting shape of the growth cluster is a sphere. For the other two models,
only bounds in dimension 2 are known. A unified approach for these models with
a new parameter (the initial number of particles at each site), allows to
prove a number of new limiting shape results in any dimension .
For the rotor router model, the limiting shape is a sphere for all values of
. For one of the sandpile models, and (the maximal value), the
limiting shape is a cube. For both sandpile models, the limiting shape is a
sphere in the limit . Finally, we prove that the rotor router
shape contains a diamond.Comment: 18 pages, 3 figures, some errors corrected and more explanation
added, to appear in Journal of Statistical Physic
A probabilistic approach to Zhang's sandpile model
The current literature on sandpile models mainly deals with the abelian
sandpile model (ASM) and its variants. We treat a less known - but equally
interesting - model, namely Zhang's sandpile. This model differs in two aspects
from the ASM. First, additions are not discrete, but random amounts with a
uniform distribution on an interval . Second, if a site topples - which
happens if the amount at that site is larger than a threshold value
(which is a model parameter), then it divides its entire content in equal
amounts among its neighbors. Zhang conjectured that in the infinite volume
limit, this model tends to behave like the ASM in the sense that the stationary
measure for the system in large volumes tends to be peaked narrowly around a
finite set. This belief is supported by simulations, but so far not by
analytical investigations.
We study the stationary distribution of this model in one dimension, for
several values of and . When there is only one site, exact computations
are possible. Our main result concerns the limit as the number of sites tends
to infinity, in the one-dimensional case. We find that the stationary
distribution, in the case , indeed tends to that of the ASM (up
to a scaling factor), in agreement with Zhang's conjecture. For the case ,
we provide strong evidence that the stationary expectation tends to
.Comment: 47 pages, 3 figure
Gibbs-non-Gibbs transitions via large deviations: computable examples
We give new and explicitly computable examples of Gibbs-non-Gibbs transitions
of mean-field type, using the large deviation approach introduced in [4]. These
examples include Brownian motion with small variance and related diffusion
processes, such as the Ornstein-Uhlenbeck process, as well as birth and death
processes. We show for a large class of initial measures and diffusive dynamics
both short-time conservation of Gibbsianness and dynamical Gibbs-non-Gibbs
transitions
Variational description of Gibbs-non-Gibbs dynamical transitions for the Curie-Weiss model
We perform a detailed study of Gibbs-non-Gibbs transitions for the
Curie-Weiss model subject to independent spin-flip dynamics
("infinite-temperature" dynamics). We show that, in this setup, the program
outlined in van Enter, Fern\'andez, den Hollander and Redig can be fully
completed, namely that Gibbs-non-Gibbs transitions are equivalent to
bifurcations in the set of global minima of the large-deviation rate function
for the trajectories of the magnetization conditioned on their endpoint. As a
consequence, we show that the time-evolved model is non-Gibbs if and only if
this set is not a singleton for some value of the final magnetization. A
detailed description of the possible scenarios of bifurcation is given, leading
to a full characterization of passages from Gibbs to non-Gibbs -and vice versa-
with sharp transition times (under the dynamics Gibbsianness can be lost and
can be recovered).
Our analysis expands the work of Ermolaev and Kulske who considered zero
magnetic field and finite-temperature spin-flip dynamics. We consider both zero
and non-zero magnetic field but restricted to infinite-temperature spin-flip
dynamics. Our results reveal an interesting dependence on the interaction
parameters, including the presence of forbidden regions for the optimal
trajectories and the possible occurrence of overshoots and undershoots in the
optimal trajectories. The numerical plots provided are obtained with the help
of MATHEMATICA.Comment: Key words and phrases: Curie-Weiss model, spin-flip dynamics, Gibbs
vs. non-Gibbs, dynamical transition, large deviations, action integral,
bifurcation of rate functio
Infinite volume limit of the Abelian sandpile model in dimensions d >= 3
We study the Abelian sandpile model on Z^d. In dimensions at least 3 we prove
existence of the infinite volume addition operator, almost surely with respect
to the infinite volume limit mu of the uniform measures on recurrent
configurations. We prove the existence of a Markov process with stationary
measure mu, and study ergodic properties of this process. The main techniques
we use are a connection between the statistics of waves and uniform
two-component spanning trees and results on the uniform spanning tree measure
on Z^d.Comment: First version: LaTeX; 29 pages. Revised version: LaTeX; 29 pages. The
main result of the paper has been extended to all dimensions at least 3, with
a new and simplyfied proof of finiteness of the two-component spanning tree.
Second revision: LaTeX; 32 page
- …