2,839 research outputs found
Delayed Lead Perforation: Can We Ever Let the Guard Down?
Lead perforation is a major complication of cardiac rhythm management devices (CRMD), occurring in about 1%. While most lead perforations occur early, numerous instances of delayed lead perforation (occurring >30 days after implantation) have been reported in the last few years. Only about 40 such cases have been published, with the majority occurring <1 year after implantation. Herein, we describe the case of an 84-year-old female who presented with recurrent syncope and was diagnosed to have delayed pacemaker lead perforation 4.8 years after implantation. Through this report, we intend to highlight the increasing use of CRMD in elderly patients, and the lifelong risk of complications with these devices. Presentation can be atypical and a high index of suspicion is necessary for diagnosis
Onset of human preterm and term birth is related to unique inflammatory transcriptome profiles at the maternal fetal interface.
BackgroundPreterm birth is a main determinant of neonatal mortality and morbidity and a major contributor to the overall mortality and burden of disease. However, research of the preterm birth is hindered by the imprecise definition of the clinical phenotype and complexity of the molecular phenotype due to multiple pregnancy tissue types and molecular processes that may contribute to the preterm birth. Here we comprehensively evaluate the mRNA transcriptome that characterizes preterm and term labor in tissues comprising the pregnancy using precisely phenotyped samples. The four complementary phenotypes together provide comprehensive insight into preterm and term parturition.MethodsSamples of maternal blood, chorion, amnion, placenta, decidua, fetal blood, and myometrium from the uterine fundus and lower segment (n = 183) were obtained during cesarean delivery from women with four complementary phenotypes: delivering preterm with (PL) and without labor (PNL), term with (TL) and without labor (TNL). Enrolled were 35 pregnant women with four precisely and prospectively defined phenotypes: PL (n = 8), PNL (n = 10), TL (n = 7) and TNL (n = 10). Gene expression data were analyzed using shrunken centroid analysis to identify a minimal set of genes that uniquely characterizes each of the four phenotypes. Expression profiles of 73 genes and non-coding RNA sequences uniquely identified each of the four phenotypes. The shrunken centroid analysis and 10 times 10-fold cross-validation was also used to minimize false positive finings and overfitting. Identified were the pathways and molecular processes associated with and the cis-regulatory elements in gene's 5' promoter or 3'-UTR regions of the set of genes which expression uniquely characterized the four phenotypes.ResultsThe largest differences in gene expression among the four groups occurred at maternal fetal interface in decidua, chorion and amnion. The gene expression profiles showed suppression of chemokines expression in TNL, withdrawal of this suppression in TL, activation of multiple pathways of inflammation in PL, and an immune rejection profile in PNL. The genes constituting expression signatures showed over-representation of three putative regulatory elements in their 5'and 3' UTR regions.ConclusionsThe results suggest that pregnancy is maintained by downregulation of chemokines at the maternal-fetal interface. Withdrawal of this downregulation results in the term birth and its overriding by the activation of multiple pathways of the immune system in the preterm birth. Complications of the pregnancy associated with impairment of placental function, which necessitated premature delivery of the fetus in the absence of labor, show gene expression patterns associated with immune rejection
Prescription and Other Medication Use in Pregnancy
OBJECTIVE:
To characterize prescription and other medication use in a geographically and ethnically diverse cohort of women in their first pregnancy.
METHODS:
In a prospective, longitudinal cohort study of nulliparous women followed through pregnancy from the first trimester, medication use was chronicled longitudinally throughout pregnancy. Structured questions and aids were used to capture all medications taken as well as reasons they were taken. Total counts of all medications taken including number in each category and class were captured. Additionally, reasons the medications were taken were recorded. Trends in medications taken across pregnancy and in the first trimester were determined.
RESULTS:
Of the 9,546 study participants, 9,272 (97.1%) women took at least one medication during pregnancy with 9,139 (95.7%) taking a medication in the first trimester. Polypharmacy, defined as taking at least five medications, occurred in 2,915 (30.5%) women. Excluding vitamins, supplements, and vaccines, 73.4% of women took a medication during pregnancy with 55.1% taking one in the first trimester. The categories of drugs taken in pregnancy and in the first trimester include the following: gastrointestinal or antiemetic agents (34.3%, 19.5%), antibiotics (25.5%, 12.6%), and analgesics (23.7%, 15.6%, which includes 3.6%; 1.4% taking an opioid pain medication).
CONCLUSION:
In this geographically and ethnically diverse cohort of nulliparous pregnant women, medication use was nearly universal and polypharmacy was common
Microstructures, geochemistry, and geochronology of mica fish: Review and advances
Shear zones are one of the most conspicuous structures in orogenic and rifting settings, accommodating high strain, rock displacement and influencing magma emplacement and fluid flow. Since shear zones may be simultaneously or sequentially affected by multiple processes involving mineral reactions, variations in pressure-temperature conditions, fluid-rock interaction, and diffusion, determining the timing of such structures has been one of the major challenges for modern geochronology. Although low- (up to lower greenschist facies) and high-temperature shear zones (above amphibolite facies) are well-dated through low- and high-closure temperature minerals, medium-temperature shear zones developed within the critical temperature window of âŒ450â550 °C, in which conventional chronometers such as 40Ar/39Ar and RbâSr applied to mica fish may or may not record the timing of deformation for multiple reasons (e.g., grain size, cooling rate, mineral composition, fluid activity, deformation, neo- and recrystallization). Here, we review the current knowledge on the evolution of mica fish and the effect of deformation on its chemical and isotopic systems. We evaluate the effect on the widely deployed in situ 40Ar/39Ar technique. Furthermore, we demonstrate the potential to assess mica fish evolution applying high-spatial resolution microstructural and chemical mapping techniques such as electron backscatter diffraction (EBSD), time-of-flight secondary ion mass spectrometry (ToFâSIMS) and in situ RbâSr via triple quadrupole inductively coupled plasma mass spectrometry (TQ-ICP-MS) to a case study of medium-temperature mylonites from the well-characterized Taxaquara shear zone, SE Brazil. We show that mica fish display complex microstructures with variable strain intensity, commonly with low strain inner cores and high strain edges and along kink planes. Strain shadows in mica fish are commonly characterized by low-strain fine-grained muscovite, suggesting recrystallization coeval with ductile deformation. Despite being intensely deformed, muscovite fish RbâSr retain the protolith age (c. 600 Ma), whereas recrystallized fine-grained muscovite yields the timing of deformation (c. 550â540 Ma). Synthetic shear bands cross-cutting coarse-grained muscovite fish induce muscovite recrystallization consistent with their distinct chemistry, with recrystallized muscovite characterized by higher FeâMg and lower Na suggesting fluid-assisted recrystallization under lower temperature compared to the muscovite fish host. We propose that these shear bands across mica fish play an important role by accommodating grain size reduction and subsequent deformation, leading to the formation of smaller individual mica fish. Grain size reduction, likely enhanced by dynamic precipitation (i.e., coeval crystal-plastic deformation and dissolution-precipitation creep), appears as the key recrystallization mechanism that allows low strain muscovite in strain shadows and shear bands to record the timing of deformation in medium-temperature shear zones, consistent with qualitative Sr diffusion modelling
Floating oil-covered debris from Deepwater Horizon : identification and application
Author Posting. © IOP Publishing, 2012. This article is posted here by permission of IOP Publishing. Re-use is limited to non-commercial purposes. The definitive version was published in Environmental Research Letters 7 (2012): 015301, doi:10.1088/1748-9326/7/1/015301.The discovery of oiled and non-oiled honeycomb material in the Gulf of Mexico surface waters and along coastal beaches shortly after the explosion of Deepwater Horizon sparked debate about its origin and the oil covering it. We show that the unknown pieces of oiled and non-oiled honeycomb material collected in the Gulf of Mexico were pieces of the riser pipe buoyancy module of Deepwater Horizon. Biomarker ratios confirmed that the oil had originated from the Macondo oil well and had undergone significant weathering. Using the National Oceanic and Atmospheric Administration's records of the oil spill trajectory at the sea surface, we show that the honeycomb material preceded the front edge of the uncertainty of the oil slick trajectory by several kilometers. We conclude that the observation of debris fields deriving from damaged marine materials may be incorporated into emergency response efforts and forecasting of coastal impacts during future offshore oil spills, and ground truthing predicative models.This research was supported by NSF grant OCE-1043976 to CR
The MOSDEF survey: a stellar mass-SFR-metallicity relation exists at
We investigate the nature of the relation among stellar mass, star-formation
rate, and gas-phase metallicity (the M-SFR-Z relation) at high redshifts
using a sample of 260 star-forming galaxies at from the MOSDEF
survey. We present an analysis of the high-redshift M-SFR-Z relation based
on several emission-line ratios for the first time. We show that a M-SFR-Z
relation clearly exists at . The strength of this relation is similar
to predictions from cosmological hydrodynamical simulations. By performing a
direct comparison of stacks of and galaxies, we find that
galaxies have dex lower metallicity at fixed M and
SFR. In the context of chemical evolution models, this evolution of the
M-SFR-Z relation suggests an increase with redshift of the mass-loading
factor at fixed M, as well as a decrease in the metallicity of infalling
gas that is likely due to a lower importance of gas recycling relative to
accretion from the intergalactic medium at high redshifts. Performing this
analysis simultaneously with multiple metallicity-sensitive line ratios allows
us to rule out the evolution in physical conditions (e.g., N/O ratio,
ionization parameter, and hardness of the ionizing spectrum) at fixed
metallicity as the source of the observed trends with redshift and with SFR at
fixed M at . While this study highlights the promise of
performing high-order tests of chemical evolution models at high redshifts,
detailed quantitative comparisons ultimately await a full understanding of the
evolution of metallicity calibrations with redshift.Comment: 19 pages, 8 figures, accepted to Ap
The MOSDEF Survey: Kinematic and Structural Evolution of Star-Forming Galaxies at
We present ionized gas kinematics for 681 galaxies at from
the MOSFIRE Deep Evolution Field survey, measured using models which account
for random galaxy-slit misalignments together with structural parameters
derived from CANDELS Hubble Space Telescope (HST) imaging. Kinematics and sizes
are used to derive dynamical masses. Baryonic masses are estimated from stellar
masses and inferred gas masses from dust-corrected star formation rates (SFRs)
and the Kennicutt-Schmidt relation. We measure resolved rotation for 105
galaxies. For the remaining 576 galaxies we use models based on HST imaging
structural parameters together with integrated velocity dispersions and
baryonic masses to statistically constrain the median ratio of intrinsic
ordered to disordered motion, . We find that
increases with increasing stellar mass and decreasing specific SFR (sSFR).
These trends may reflect marginal disk stability, where systems with higher gas
fractions have thicker disks. For galaxies with detected rotation we assess
trends between their kinematics and mass, sSFR, and baryon surface density
(). Intrinsic dispersion correlates most with
and velocity correlates most with mass. By comparing
dynamical and baryonic masses, we find that galaxies at are
baryon dominated within their effective radii (), with Mdyn/Mbaryon
increasing over time. The inferred baryon fractions within ,
, decrease over time, even at fixed mass, size, or surface
density. At fixed redshift, does not appear to vary with
stellar mass but increases with decreasing and increasing
. For galaxies at , the median inferred baryon
fractions generally exceed 100%. We discuss possible explanations and future
avenues to resolve this tension.Comment: Accepted to ApJ. Added Figure 9, corrected sample size (main results
unchanged). 28 pages, 13 figure
Understanding the association between negative symptoms and performance on effort-based decision-making tasks: The importance of defeatist performance beliefs
Effort-based decision-making paradigms are increasingly utilized to gain insight into the nature of motivation deficits. Research has shown associations between effort-based decision making and experiential negative symptoms; however, the associations are not consistent. The current study had two primary goals. First, we aimed to replicate previous findings of a deficit in effort-based decision making among individuals with schizophrenia on a test of cognitive effort. Second, in a large sample combined from the current and a previous study, we sought to examine the association between negative symptoms and effort by including the related construct of defeatist beliefs. The results replicated previous findings of impaired cognitive effort-based decision making in schizophrenia. Defeatist beliefs significantly moderated the association between negative symptoms and effort-based decision making such that there was a strong association between high negative symptoms and deficits in effort-based decision making, but only among participants with high levels of defeatist beliefs. Thus, our findings suggest the relationship between negative symptoms and effort performance may be understood by taking into account the role of defeatist beliefs, and finding that might explain discrepancies in previous studies
- âŠ