3,558 research outputs found
Variation in foraging activity of Acanthochitona garnoti (Mollusca: Polyplacophora) from different habitats
Click on the link to view the abstract.S. Afc. J. Zool. 1997,32(3
Asymptotic Boundary-Layer Solutions for Mixed Convection from a Vertical Surface in a Micropolar Fluid
Using the theory of micropolar fluids due to Eringen, asymptotic boundary layer solutions are presented to study the combined convection from a vertical semi-infinite plate to a micropolar fluid. Consideration is given to the region close to the leading edge as well as the region far away from the leading edge. Numerical results are obtained for the velocity, angular velocity and temperature distribution. The missing wall values of the velocity, angular velocity and thermal functions are tabulated. Micropolar fluids display drag reduction and reduced surface heat transfer rate when compared to Newtonian fluids
Asymptotic Boundary-Layer Solutions for Mixed Convection from a Vertical Surface in a Micropolar Fluid
Using the theory of micropolar fluids due to Eringen, asymptotic boundary layer solutions are presented to study the combined convection from a vertical semi-infinite plate to a micropolar fluid. Consideration is given to the region close to the leading edge as well as the region far away from the leading edge. Numerical results are obtained for the velocity, angular velocity and temperature distribution. The missing wall values of the velocity, angular velocity and thermal functions are tabulated. Micropolar fluids display drag reduction and reduced surface heat transfer rate when compared to Newtonian fluids
An et al. Reply
Our Letter reported high-resolution transmission electron microscopy on commercial quality boron showing that ∼2=3 of the grains exhibit smooth microstructure, leading to an x-ray diffraction pattern of well-known beta boron [1]. The other 1=3 grains exhibit a uniform zigzag pattern that extends across the entire grain and exhibits a very regular twinlike symmetry on every other lattice plane. This second phase gives diffraction patterns that are different from beta
New Ground-State Crystal Structure of Elemental Boron
Elemental boron exhibits many polymorphs in nature based mostly on an icosahedral shell motif, involving stabilization of 13 strong multicenter intraicosahedral bonds. It is commonly accepted that the most thermodynamic stable structure of elemental boron at atmospheric pressure is the β rhombohedral boron (β−B). Surprisingly, using high-resolution transmission electron microscopy, we found that pure boron powder contains grains of two different types, the previously identified β−B containing a number of randomly spaced twins and what appears to be a fully transformed twinlike structure. This fully transformed structure, denoted here as τ−B, is based on the Cmcm orthorhombic space group. Quantum mechanics predicts that the newly identified τ−B structure is 13.8  meV/B more stable than β−B. The τ−B structure allows 6% more charge transfer from B_(57) units to nearby B_(12) units, making the net charge 6% closer to the ideal expected from Wade’s rules. Thus, we predict the τ−B structure to be the ground state structure for elemental boron at atmospheric pressure
Formation and Evolution of the Disk System of the Milky Way: [alpha/Fe] Ratios and Kinematics of the SEGUE G-Dwarf Sample
We employ measurements of the [alpha/Fe] ratio derived from low-resolution
(R~2000) spectra of 17,277 G-type dwarfs from the SEGUE survey to separate them
into likely thin- and thick-disk subsamples. Both subsamples exhibit strong
gradients of orbital rotational velocity with metallicity, of opposite signs,
-20 to -30 km/s/dex for the thin-disk and +40 to +50 km/s/dex for the
thick-disk population. The rotational velocity is uncorrelated with
Galactocentric distance for the thin-disk subsample, and exhibits a small trend
for the thick-disk subsample. The rotational velocity decreases with distance
from the plane for both disk components, with similar slopes (-9.0 {\pm} 1.0
km/s/kpc). Thick-disk stars exhibit a strong trend of orbital eccentricity with
metallicity (about -0.2/dex), while the eccentricity does not change with
metallicity for the thin-disk subsample. The eccentricity is almost independent
of Galactocentric radius for the thin-disk population, while a marginal
gradient of the eccentricity with radius exists for the thick-disk population.
Both subsamples possess similar positive gradients of eccentricity with
distance from the Galactic plane. The shapes of the eccentricity distributions
for the thin- and thick-disk populations are independent of distance from the
plane, and include no significant numbers of stars with eccentricity above 0.6.
Among several contemporary models of disk evolution we consider, radial
migration appears to have played an important role in the evolution of the
thin-disk population, but possibly less so for the thick disk, relative to the
gas-rich merger or disk heating scenarios. We emphasize that more physically
realistic models and simulations need to be constructed in order to carry out
the detailed quantitative comparisons that our new data enable.Comment: Accepted for publication in ApJ, 18 pages, 12 figures, 2 tables,
emulateapj forma
Nucleation of amorphous shear bands at nanotwins in boron suboxide
The roles of grain boundaries and twin boundaries in mechanical properties are well understood for metals and alloys. However, for covalent solids, their roles in deformation response to applied stress are not established. Here we characterize the nanotwins in boron suboxide (B_6O) with twin boundaries along the {0111} planes using both scanning transmission electron microscopy and quantum mechanics. Then, we use quantum mechanics to determine the deformation mechanism for perfect and twinned B_6O crystals for both pure shear and biaxial shear deformations. Quantum mechanics suggests that amorphous bands nucleate preferentially at the twin boundaries in B_6O because the twinned structure has a lower maximum shear strength by 7.5% compared with perfect structure. These results, which are supported by experimental observations of the coordinated existence of nanotwins and amorphous shear bands in B_6O, provide a plausible atomistic explanation for the influence of nanotwins on the deformation behaviour of superhard ceramics
Nuclear Theory and Science of the Facility for Rare Isotope Beams
The Facility for Rare Isotope Beams (FRIB) will be a world-leading laboratory
for the study of nuclear structure, reactions and astrophysics. Experiments
with intense beams of rare isotopes produced at FRIB will guide us toward a
comprehensive description of nuclei, elucidate the origin of the elements in
the cosmos, help provide an understanding of matter in neutron stars, and
establish the scientific foundation for innovative applications of nuclear
science to society. FRIB will be essential for gaining access to key regions of
the nuclear chart, where the measured nuclear properties will challenge
established concepts, and highlight shortcomings and needed modifications to
current theory. Conversely, nuclear theory will play a critical role in
providing the intellectual framework for the science at FRIB, and will provide
invaluable guidance to FRIB's experimental programs. This article overviews the
broad scope of the FRIB theory effort, which reaches beyond the traditional
fields of nuclear structure and reactions, and nuclear astrophysics, to explore
exciting interdisciplinary boundaries with other areas.
\keywords{Nuclear Structure and Reactions. Nuclear
Astrophysics. Fundamental Interactions. High Performance
Computing. Rare Isotopes. Radioactive Beams.Comment: 20 pages, 7 figure
- …