6 research outputs found

    A Five-Species Transcriptome Array for Oral Mixed-Biofilm Studies

    Get PDF
    BACKGROUND: Oral polymicrobial interactions and biofilm formation are associated with initiation and progression of caries, gingivitis, and periodontitis. Transcriptome studies of such interactions, allowing a first mechanistic insight, are hampered by current single-species array designs. METHODOLOGY/PRINCIPAL FINDINGS: In this study we used 385 K NimbleGene™ technology for design and evaluation of an array covering the full genomes of 5 important physiological-, cariogenic-, and periodontitis-associated microorganisms (Streptococcus sanguinis, Streptococcus mutans, Fusobacterium nucleatum, Aggregatibacter actinomycetemcomitans, and Porphyromonas gingivalis). Array hybridization was done with cDNA from cultures grown for 24 h anaerobically. Single species experiments identified cross-species hybridizing array probes. These probes could be neglected in a mixed-species experimental setting without the need to exclude the whole genes from the analysis. Between 69% and almost 99% of the genomes were actively transcribed under the mono-species planktonic, monolayer, and biofilm conditions. The influence of Streptococcus mitis (not represented on the array) on S. mutans gene transcription was determined as a test for a dual-species mixed biofilm setup. Phenotypically, under the influence of S. mitis an increase in S. mutans biofilm mass and a decrease in media pH-value were noticed, thereby confirming previously published data. Employing a stringent cut-off (2-fold, p<0.05), 19 S. mutans transcripts were identified with increased abundance, and 11 with decreased abundance compared to a S. mutans mono-species biofilm. Several of these genes have previously been found differentially regulated under general and acid stress, thereby confirming the value of this array. CONCLUSIONS/SIGNIFICANCE: This new array allows transcriptome studies on multi-species oral biofilm interactions. It may become an important asset in future oral biofilm and inhibitor/therapy studies

    Setup of an In Vitro Test System for Basic Studies on Biofilm Behavior of Mixed-Species Cultures with Dental and Periodontal Pathogens

    Get PDF
    BACKGROUND: Caries and periodontitis are important human diseases associated with formation of multi-species biofilms. The involved bacteria are intensively studied to understand the molecular basis of the interactions in such biofilms. This study established a basic in vitro single and mixed-species culture model for oral bacteria combining three complimentary methods. The setup allows a rapid screening for effects in the mutual species interaction. Furthermore, it is easy to handle, inexpensive, and reproducible. METHODS: Streptococcus mitis, S. salivarius and S. sanguinis, typical inhabitants of the healthy oral cavity, S. mutans as main carriogenic species, and Porphyromonas gingivalis, Fusobacterium nucleatum, Parvimonas micra, S. intermedius and Aggregatibacter actinomycetemcomitans as periodontitis-associated bacteria, were investigated for their biofilm forming ability. Different liquid growth media were evaluated. Safranin-staining allowed monitoring of biofilm formation under the chosen conditions. Viable counts and microscopy permitted investigation of biofilm behavior in mixed-species and transwell setups. FINDINGS: S. mitis, F. nucleatum, P. gingivalis and P. micra failed to form biofilm structures. S. mutans, S. sanguinis, S. intermedius and S. salivarius established abundant biofilm masses in CDM/sucrose. A. actinomycetemcomitans formed patchy monolayers. For in depth analysis S. mitis, S. mutans and A. actinomycetemcomitans were chosen, because i) they are representatives of the physiological-, cariogenic and periodontitis-associated bacterial flora, respectively and ii) their difference in their biofilm forming ability. Microscopic analysis confirmed the results of safranin staining. Investigation of two species combinations of S. mitis with either S. mutans or A. actinomycetemcomitans revealed bacterial interactions influencing biofilm mass, biofilm structure and cell viability. CONCLUSIONS: This setup shows safranin staining, microscopic analysis and viable counts together are crucial for basic examination and evaluation of biofilms. Our experiment generated meaningful results, exemplified by the noted S. mitis influence, and allows a fast decision about the most important bacterial interactions which should be investigated in depth

    Targeted Swabbing of Implant-Associated Biofilm Formation—A Staining-Guided Sampling Approach for Optimizing Routine Microbiological Diagnostics

    No full text
    Background: Swabbing of implants removed from potentially infected sites represents a time saving and ubiquitously applicable alternative to sonication approaches. The latter bears an elevated risk of processing related contaminations due to the high number of handling steps. Since biofilms are usually invisible to the naked eye, adequate swabbing relies on the chance of hitting the colonized area on the implant. A targeted directed swabbing approach could overcome this detriment. Method: Three dyes were tested at different concentrations for their toxicity on biofilm-associated cells of S. epidermidis, the species most frequently identified as a causative agent of implant-associated infections. Results: Malachite green (0.2%) delivered the highest bacterial recovery rates combined with the best results in biofilm visualization. Its suitability for diagnostic approaches was demonstrated for smooth and rough implant surfaces. Biofilm-covered areas were successfully visualized. Conclusion: Subsequent targeted swab-sampling resulted in a significantly increased bacterial recovery rate compared to a dye-free “random swabbing” diagnostic approach
    corecore