26 research outputs found

    Inhibition of fatty acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer.

    Get PDF
    Expression of the oncogenic transcription factor MYC is disproportionately elevated in triple-negative breast cancer (TNBC), as compared to estrogen receptor-, progesterone receptor- or human epidermal growth factor 2 receptor-positive (RP) breast cancer. We and others have shown that MYC alters metabolism during tumorigenesis. However, the role of MYC in TNBC metabolism remains mostly unexplored. We hypothesized that MYC-dependent metabolic dysregulation is essential for the growth of MYC-overexpressing TNBC cells and may identify new therapeutic targets for this clinically challenging subset of breast cancer. Using a targeted metabolomics approach, we identified fatty acid oxidation (FAO) intermediates as being dramatically upregulated in a MYC-driven model of TNBC. We also identified a lipid metabolism gene signature in patients with TNBC that were identified from The Cancer Genome Atlas database and from multiple other clinical data sets, implicating FAO as a dysregulated pathway that is critical for TNBC cell metabolism. We found that pharmacologic inhibition of FAO catastrophically decreased energy metabolism in MYC-overexpressing TNBC cells and blocked tumor growth in a MYC-driven transgenic TNBC model and in a MYC-overexpressing TNBC patient-derived xenograft. These findings demonstrate that MYC-overexpressing TNBC shows an increased bioenergetic reliance on FAO and identify the inhibition of FAO as a potential therapeutic strategy for this subset of breast cancer

    Oncogene-regulated release of extracellular vesicles

    No full text
    Oncogenes can alter metabolism by changing the balance between anabolic and catabolic processes. However, how oncogenes regulate tumor cell biomass remains poorly understood. Using isogenic MCF10A cells transformed with nine different oncogenes, we show that specific oncogenes reduce the biomass of cancer cells by promoting extracellular vesicle (EV) release. While MYC and AURKB elicited the highest number of EVs, each oncogene selectively altered the protein composition of released EVs. Likewise, oncogenes alter secreted miRNAs. MYC-overexpressing cells require ceramide, whereas AURKB requires ESCRT to release high levels of EVs. We identify an inverse relationship between MYC upregulation and activation of the RAS/MEK/ERK signaling pathway for regulating EV release in some tumor cells. Finally, lysosome genes and activity are downregulated in the context of MYC and AURKB, suggesting that cellular contents, instead of being degraded, were released via EVs. Thus, oncogene-mediated biomass regulation via differential EV release is a new metabolic phenotype

    MYC-driven inhibition of the glutamate-cysteine ligase promotes glutathione depletion in liver cancer

    No full text
    How MYC reprograms metabolism in primary tumors remains poorly understood. Using integrated gene expression and metabolite profiling, we identify six pathways that are coordinately deregulated in primary MYC-driven liver tumors: glutathione metabolism; glycine, serine, and threonine metabolism; aminoacylt-RNA biosynthesis; cysteine and methionine metabolism; ABC transporters; and mineral absorption. We then focus our attention on glutathione (GSH) and glutathione disulfide (GSSG), as they are markedly decreased in MYC-driven tumors. We find that fewer glutamine-derived carbons are incorporated into GSH in tumor tissue relative to non-tumor tissue. Expression of GCLC, the rate-limiting enzyme of GSH synthesis, is attenuated by the MYC-induced microRNA miR-18a. Inhibition of miR-18a in vivo leads to increased GCLC protein expression and GSH abundance in tumor tissue. Finally, MYC-driven liver tumors exhibit increased sensitivity to acute oxidative stress. In summary, MYC-dependent attenuation of GCLC by miR-18a contributes to GSH depletion in vivo, and low GSH corresponds with increased sensitivity to oxidative stress in tumors. Our results identify new metabolic pathways deregulated in primary MYC tumors and implicate a role for MYC in regulating a major antioxidant pathway downstream of glutamine

    Monoacylglycerol lipase inhibitor JZL184 improves behavior and neural properties in Ts65Dn mice, a model of down syndrome.

    No full text
    Genetic alterations or pharmacological treatments affecting endocannabinoid signaling have profound effects on synaptic and neuronal properties and, under certain conditions, may improve higher brain functions. Down syndrome (DS), a developmental disorder caused by triplication of chromosome 21, is characterized by deficient cognition and inevitable development of the Alzheimer disease (AD) type pathology during aging. Here we used JZL184, a selective inhibitor of monoacylglycerol lipase (MAGL), to examine the effects of chronic MAGL inhibition on the behavioral, biochemical, and synaptic properties of aged Ts65Dn mice, a genetic model of DS. In both Ts65Dn mice and their normosomic (2N) controls, JZL184-treatment increased brain levels of 2-arachidonoylglycerol (2-AG) and decreased levels of its metabolites such as arachidonic acid, prostaglandins PGD2, PGE2, PGFα, and PGJ2. Enhanced spontaneous locomotor activity of Ts65Dn mice was reduced by the JZL184-treatement to the levels observed in 2N animals. Deficient long-term memory was also improved, while short-term and working types of memory were unaffected. Furthermore, reduced hippocampal long-term potentiation (LTP) was increased in the JZL184-treated Ts65Dn mice to the levels observed in 2N mice. Interestingly, changes in synaptic plasticity and behavior were not observed in the JZL184-treated 2N mice suggesting that the treatment specifically attenuated the defects in the trisomic animals. The JZL184-treatment also reduced the levels of Aβ40 and Aβ42, but had no effect on the levels of full length APP and BACE1 in both Ts65Dn and 2N mice. These data show that chronic MAGL inhibition improves the behavior and brain functions in a DS model suggesting that pharmacological targeting of MAGL may be considered as a perspective new approach for improving cognition in DS
    corecore