1,353 research outputs found
Ground state of Li and Be using explicitly correlated functions
We compare the explicitly correlated Hylleraas and exponential basis sets in
the evaluations of ground state of Li and Be. Calculations with Hylleraas
functions are numerically stable and can be performed with the large number of
basis functions. Our results for ground state energies , of Li and Be correspondingly, are the
most accurate to date. When small basis set is considered, explicitly
correlated exponential functions are much more effective. With only 128
functions we obtained about relative accuracy, but the severe
numerical instabilities make this basis costly in the evaluation.Comment: 15 page
Analytic Evaluation of Four-Particle Integrals with Complex Parameters
The method for analytic evaluation of four-particle integrals, proposed by
Fromm and Hill, is generalized to include complex exponential parameters. An
original procedure of numerical branch tracking for multiple valued functions
is developed. It allows high precision variational solution of the Coulomb
four-body problem in a basis of exponential-trigonometric functions of
interparticle separations. Numerical results demonstrate high efficiency and
versatility of the new method.Comment: 13 pages, 4 figure
Effect of nuclear motion on the critical nuclear charge for two-electron atoms
A variational method for calculating the critical nuclear charge, Zc, required for the binding of a nucleus to two electrons is reported. The method is very effective and performs well compared to the traditional variational principle for calculating energy. The critical nuclear charge, which corresponds to the minimum charge required for the atomic system to have at least one bound state, has been calculated for helium-like systems both with infinite and finite nuclear masses. The value of 0.911 028 2(3) is in very good agreement with recent values in the literature for two-electron atoms with an infinite nuclear mass. When nuclear motion is considered, the value for Zc varies from 0.911 030 3(2) for that with a nuclear mass of Ne (the largest heliogenic system considered) to 0.921 802 4(4) for a system with the nuclear mass of a positron. In all cases the energy varies smoothly as . It is found that for the finite nuclear mass case, in agreement with previous work for the fixed nucleus mass system, the outer electron remains localised near the nucleus at Z = Zc. Additionally, the electron probability distribution is calculated to determine the behaviour of the electrons at low Z
Vibrational spectroscopy of H2+: precise evaluation of the Zeeman effect
We present an accurate computation of the g-factors of the hyperfine states
of the hydrogen molecular ion H2+. The results are in good agreement with
previous experiments, and can be tested further by rf spectroscopy. Their
implication for high-precision two-photon vibrational spectroscopy of H2+ is
also discussed. It is found that the most intense hyperfine components of
two-photon lines benefit from a very small Zeeman splitting
Transition to adult care in Finnish adolescents with juvenile idiopathic arthritis
Objective The symptoms of juvenile idiopathic arthritis (JIA) and the necessity for continuous treatment may persist in adulthood. Therefore, patients with JIA need to be appropriately transferred to adult care. We aimed to analyse the timing of the patients' transition to adult care, and patients' self-management skills with the process and the quality of the transition. Method This study included 161 Finnish participants of the population-based Nordic JIA cohort who attended a 17 year follow-up appointment. Special attention was paid to the three groups: those referred by the paediatric rheumatology outpatient clinic to primary healthcare (PHC), those who were directly transferred to adult rheumatology care, and those who were later referred. Results A total of 136 patients (84%) were eligible to participate in the study, and 40% of them were directly transferred to an adult rheumatology clinic. Of the patients, 72% eventually ended up being referred to an adult rheumatology outpatient clinic. However, 16% of the patients in the PHC group had active disease during the study appointment and were referred to adult services after the study visit. Conclusion This study reveals the need to improve the transition process from paediatric care to adult care and to find the variables that can indicate the need for immediate transition. Although challenging, it is important to avoid treatment delay in adult patients with JIA who may have active disease but who do not have appropriate access to an adult rheumatological outpatient clinic.Peer reviewe
Excitonic Dynamical Franz-Keldysh Effect
The Dynamical Franz-Keldysh Effect is exposed by exploring near-bandgap
absorption in the presence of intense THz electric fields. It bridges the gap
between the DC Franz- Keldysh effect and multi-photon absorption and competes
with the THz AC Stark Effect in shifting the energy of the excitonic resonance.
A theoretical model which includes the strong THz field non-perturbatively via
a non-equilibrium Green Functions technique is able to describe the Dynamical
Franz-Keldysh Effect in the presence of excitonic absorption.Comment: 4 pages in revtex with 5 figures included using epsf. Submitted to
Physical Review Letter
Quasienergy Spectroscopy of Excitons
We theoretically study nonlinear optics of excitons under intense THz
irradiation. In particular, the linear near infrared absorption and resonantly
enhanced nonlinear sideband generation are described. We predict a rich
structure in the spectra which can be interpreted in terms of the quasienergy
spectrum of the exciton, via a remarkably transparent expression for the
susceptibility, and show that the effects of strongly avoided quasienergy
crossings manifest themselves directly, both in the absorption and transmitted
sidebands.Comment: 4 pages RevTex, 3 eps figs included, as publishe
Absorption-emission symmetry breaking and the different origins of vibrational structures of the 1Qy and 1Qx electronic transitions of pheophytin a
© 2019 Author(s). The vibrational structure of the optical absorption and fluorescence spectra of the two lowest-energy singlet electronic states (Qy and Qx) of pheophytin a were carefully studied by combining low-resolution and high-resolution spectroscopy with quantum chemical analysis and spectral modeling. Large asymmetry was revealed between the vibrational structures of the Qy absorption and fluorescence spectra, integrally characterized by the total Huang-Rhys factor and reorganization energy in absorption of SvibA = 0.43 ± 0.06, λA = 395 cm-1 and in emission of SvibE = 0.35 ± 0.06, λE = 317 cm-1. Time-dependent density-functional theory using the CAM-B3LYP, ωB97XD, and MN15 functionals could predict and interpret this asymmetry, with the exception of one vibrational mode per model, which was badly misrepresented in predicted absorption spectra; for CAM-B3LYP and ωB97XD, this mode was a Kekulé-type mode depicting aromaticity. Other computational methods were also considered but performed very poorly. The Qx absorption spectrum is broad and could not be interpreted in terms of a single set of Huang-Rhys factors depicting Franck-Condon allowed absorption, with Herzberg-Teller contributions to the intensity being critical. For it, CAM-B3LYP calculations predict that SvibA (for modes >100 cm-1) = 0.87 and λA = 780 cm-1, with effective x and y polarized Herzberg-Teller reorganization energies of 460 cm-1 and 210 cm-1, respectively, delivering 15% y-polarized intensity. However, no method was found to quantitatively determine the observed y-polarized contribution, with contributions of up to 50% being feasible
Linear optical absorption spectra of mesoscopic structures in intense THz fields: free particle properties
We theoretically study the effect of THz radiation on the linear optical
absorption spectra of semiconductor structures. A general theoretical
framework, based on non-equilibrium Green functions, is formulated, and applied
to the calculation of linear optical absorption spectrum for several
non-equilibrium mesoscopic structures. We show that a blue-shift occurs and
sidebands appear in bulk-like structures, i.e., the dynamical Franz-Keldysh
effect [A.-P. Jauho and K. Johnsen, Phys. Rev. Lett. 76, 4576 (1996)]. An
analytic calculation leads to the prediction that in the case of superlattices
distinct stable steps appear in the absorption spectrum when conditions for
dynamical localization are met.Comment: 13 Pages, RevTex using epsf to include 8 ps figures. Submitted to
Phys. Rev. B (3 April 97
- …