15,388 research outputs found
Ground State Entropy of the Potts Antiferromagnet on Cyclic Strip Graphs
We present exact calculations of the zero-temperature partition function
(chromatic polynomial) and the (exponent of the) ground-state entropy for
the -state Potts antiferromagnet on families of cyclic and twisted cyclic
(M\"obius) strip graphs composed of -sided polygons. Our results suggest a
general rule concerning the maximal region in the complex plane to which
one can analytically continue from the physical interval where . The
chromatic zeros and their accumulation set exhibit the rather
unusual property of including support for and provide further
evidence for a relevant conjecture.Comment: 7 pages, Latex, 4 figs., J. Phys. A Lett., in pres
The missing metals problem. III How many metals are expelled from galaxies?
[Abridged] We revisit the metal budget at z~2. In the first two papers of
this series, we already showed that ~30% (to <60% if extrapolating the LF) of
the metals are observed in all z~2.5 galaxies detected in current surveys.
Here, we extend our analysis to the metals outside galaxies, i.e. in
intergalactic medium (IGM), using observational data and analytical
calculations. Our results for the two are strikingly similar: (1)
Observationally, we find that, besides the small (5%) contribution of DLAs, the
forest and sub-DLAs contribute subtantially to make <30--45% of the metal
budget, but neither of these appear to be sufficient to close the metal budget.
The forest accounts for 15--30% depending on the UV background, and sub-DLAs
for >2% to <17% depending on the ionization fraction. Together, the `missing
metals' problem is substantially eased. (2) We perform analytical calculations
based on the effective yield--mass relation. At z=2, we find that the method
predicts that 2$--50% of the metals have been ejected from galaxies into the
IGM, consistent with the observations. The metal ejection is predominantly by
L<1/3L_B^*(z=2) galaxies, which are responsible for 90% the metal enrichment,
while the 50 percentile is at L~1/10L^*_B(z=2). As a consequence, if indeed 50%
of the metals have been ejected from galaxies, 3--5 bursts of star formation
are required per galaxy prior to z=2. The ratio between the mass of metals
outside galaxies to those in stars has changed from z=2 to z=0: it was 2:1 or
1:1 and is now 1:8 or 1:9. This evolution implies that a significant fraction
of the IGM metals will cool and fall back into galaxies.Comment: 18pages, MNRAS, in press; small changes to match proofs; extended
version with summary tabl
Stochastic polarization formation in exciton-polariton Bose-Einstein condensates
We demonstrate theoretically the spontaneous formation of a stochastic
polarization in exciton-polariton Bose-Einstein condensates in planar
microcavities under pulsed excitation. Below the threshold pumping intensity
(dependent on the polariton life-time) the average polarization degree is close
to zero, whilst above threshold the condensate acquires a polarization
described by a (pseudospin) vector with random orientation, in general. We
establish the link between second order coherence of the polariton condensate
and the distribution function of its polarization. We examine also the
mechanisms of polarization dephasing and relaxation.Comment: 4 pages, 3 figure
Ground State Entropy of Potts Antiferromagnets on Cyclic Polygon Chain Graphs
We present exact calculations of chromatic polynomials for families of cyclic
graphs consisting of linked polygons, where the polygons may be adjacent or
separated by a given number of bonds. From these we calculate the (exponential
of the) ground state entropy, , for the q-state Potts model on these graphs
in the limit of infinitely many vertices. A number of properties are proved
concerning the continuous locus, , of nonanalyticities in . Our
results provide further evidence for a general rule concerning the maximal
region in the complex q plane to which one can analytically continue from the
physical interval where .Comment: 27 pages, Latex, 17 figs. J. Phys. A, in pres
Spin-Peierls states of quantum antiferromagnets on the lattice
We discuss the quantum paramagnetic phases of Heisenberg antiferromagnets on
the 1/5-depleted square lattice found in . The possible phases of
the quantum dimer model on this lattice are obtained by a mapping to a
quantum-mechanical height model. In addition to the ``decoupled'' phases found
earlier, we find a possible intermediate spin-Peierls phase with
spontaneously-broken lattice symmetry. Experimental signatures of the different
quantum paramagnetic phases are discussed.Comment: 9 pages; 2 eps figure
Recommended from our members
Assimilation of TES data from the Mars Global Surveyor scientifc mapping phase
The Thermal Emission Spectrometer (TES)aboard Mars Global Surveyor has produced data which cover almost two Martian years so far (during its scientific mapping phase). Thermal profiles for the atmosphere below 40 km and total dust opacities can be retrieved from TES nadir spectra and assimilated into a Mars general circulation model (MGCM), by using the assimilation techniques described in detail by Lewis et al. (2002). This paper describes some preliminary results from assimilations of temperature data from the period Ls=141°- 270° corresponding to late northern summer until winter solstice on Mars. Work in progress is devoted to assimilate both temperature and total dust opacity data for the full period for which they are already available
Recommended from our members
Data assimilation for the Martian atmosphere using MGS Thermal Emission Spectrometer observations
From the introduction: Given the quantity of data expected from current and forthcoming spacecraft missions to Mars, it is now possible to use data assimilation as a means of atmospheric analysis for the first time for a planet other than the Earth. Several groups have described plans to develop assimilation schemes for Mars [Banfield et al., 1995; Houben, 1999; Lewis and Read, 1995; Lewis et al., 1996, 1997; Zhang et al., 2001]. Data assimilation is a technique for the analysis of atmospheric observations which combines currently valid information with prior knowledge from previous observations and dynamical and physical constraints, via the use of a numerical model. Despite the number of new missions, observations of the atmosphere of Mars in the near future are still likely to be sparse when compared to those of the Earth, perhaps
comprising one orbiter and a few surface stations at best
at any one time. Data assimilation is useful as a means
to extract the maximum information from such observations,
both by a form of interpolation in space and time
using model constraints and by the combination of information from different observations, e.g. temperature
profiles and surface pressure measurements which may
be irregularly distributed. The procedure can produce a
dynamically consistent set of meteorological fields and
can be used directly to test and to refine an atmospheric
model against observations
Andreev tunnelling in quantum dots: A slave-boson approach
We study a strongly interacting quantum dot connected to a normal and to a
superconducting lead. By means of the slave-boson technique we investigate the
low temperature regime and discuss electrical transport through the dot. We
find that the zero bias anomaly in the current-voltage characteristics which is
associated to the occurance of the Kondo resonance in the quantum dot, is
enhanced in the presence of superconductivity, due to resonant Andreev
scattering.Comment: 4 pages, 1 figur
- …