855 research outputs found

    Shorter sleep duration and better sleep quality are associated with greater tissue density in the brain

    Get PDF
    Poor sleep quality is associated with unfavorable psychological measurements, whereas sleep duration has complex relationships with such measurements. The aim of this study was to identify the associations between microstructural properties of the brain and sleep duration/sleep quality in a young adult. The associations between mean diffusivity (MD), a measure of diffusion tensor imaging (DTI), and sleep duration/sleep quality were investigated in a study cohort of 1201 normal young adults. Positive correlations between sleep duration and MD of widespread areas of the brain, including the prefrontal cortex (PFC) and the dopaminergic systems, were identified. Negative correlations between sleep quality and MD of the widespread areas of the brain, including the PFC and the right hippocampus, were also detected. Lower MD has been previously associated with more neural tissues in the brain. Further, shorter sleep duration was associated with greater persistence and executive functioning (lower Stroop interference), whereas good sleep quality was associated with states and traits relevant to positive affects. These results suggest that bad sleep quality and longer sleep duration were associated with aberrant neurocognitive measurements in the brain in healthy young adults

    Enhancing Authentication in Online Distant Exams: A Proposed Method Utilizing Face and Voice Recognition

    Get PDF
    Due to COVID-19 pandemic, face-to-face teaching has been replaced by online education to reduce the risks of spreading the Coronavirus. Online examination is an important asset in the context of online learning to assess students, but observing students during testing and ensuring that they do not engage in misbehavior remains a major issue. Human observation is one of the most common methods when conducting an exam to ensure that students do not perform any unexpected behaviors, by entering the student in a laboratory or hall at the university and observing him throughout the exam period visually and soundly. However, this method is costly and labor-intensive. In this paper, a system is created that monitors students during an online test automatically based on face recognition and voice recognition using a machine learning algorithm. The camera on the students computer will be used to track the students facial movements, pupils, and lip movements, monitoring the students behavior throughout the test, and stopping any unexpected behavior. In this system, there are two parts: facial recognition and unexpected behavior detection. The face was recognized with an accuracy of 98.3%, and unexpected behavior was detected with an accuracy of 97.6%. There is also an opportunity to increase accuracy by improving the quality of the images in the dataset

    Future and potential spending on health 2015-40: Development assistance for health, and government, prepaid private, and out-of-pocket health spending in 184 countries

    Get PDF
    Background: The amount of resources, particularly prepaid resources, available for health can affect access to health care and health outcomes. Although health spending tends to increase with economic development, tremendous variation exists among health financing systems. Estimates of future spending can be beneficial for policy makers and planners, and can identify financing gaps. In this study, we estimate future gross domestic product (GDP), all-sector government spending, and health spending disaggregated by source, and we compare expected future spending to potential future spending. Methods: We extracted GDP, government spending in 184 countries from 1980-2015, and health spend data from 1995-2014. We used a series of ensemble models to estimate future GDP, all-sector government spending, development assistance for health, and government, out-of-pocket, and prepaid private health spending through 2040. We used frontier analyses to identify patterns exhibited by the countries that dedicate the most funding to health, and used these frontiers to estimate potential health spending for each low-income or middle-income country. All estimates are inflation and purchasing power adjusted. Findings: We estimated that global spending on health will increase from US9.21trillionin2014to9.21 trillion in 2014 to 24.24 trillion (uncertainty interval [UI] 20.47-29.72) in 2040. We expect per capita health spending to increase fastest in upper-middle-income countries, at 5.3% (UI 4.1-6.8) per year. This growth is driven by continued growth in GDP, government spending, and government health spending. Lower-middle income countries are expected to grow at 4.2% (3.8-4.9). High-income countries are expected to grow at 2.1% (UI 1.8-2.4) and low-income countries are expected to grow at 1.8% (1.0-2.8). Despite this growth, health spending per capita in low-income countries is expected to remain low, at 154(UI133181)percapitain2030and154 (UI 133-181) per capita in 2030 and 195 (157-258) per capita in 2040. Increases in national health spending to reach the level of the countries who spend the most on health, relative to their level of economic development, would mean $321 (157-258) per capita was available for health in 2040 in low-income countries. Interpretation: Health spending is associated with economic development but past trends and relationships suggest that spending will remain variable, and low in some low-resource settings. Policy change could lead to increased health spending, although for the poorest countries external support might remain essential

    Future and potential spending on health 2015-40 : development assistance for health, and government, prepaid private, and out-of-pocket health spending in 184 countries

    Get PDF
    Background The amount of resources, particularly prepaid resources, available for health can affect access to health care and health outcomes. Although health spending tends to increase with economic development, tremendous variation exists among health financing systems. Estimates of future spending can be beneficial for policy makers and planners, and can identify financing gaps. In this study, we estimate future gross domestic product (GDP), all-sector government spending, and health spending disaggregated by source, and we compare expected future spending to potential future spending. Methods We extracted GDP, government spending in 184 countries from 1980-2015, and health spend data from 1995-2014. We used a series of ensemble models to estimate future GDP, all-sector government spending, development assistance for health, and government, out-of-pocket, and prepaid private health spending through 2040. We used frontier analyses to identify patterns exhibited by the countries that dedicate the most funding to health, and used these frontiers to estimate potential health spending for each low-income or middle-income country. All estimates are inflation and purchasing power adjusted. Findings We estimated that global spending on health will increase from US9.21trillionin2014to9.21 trillion in 2014 to 24.24 trillion (uncertainty interval [UI] 20.47-29.72) in 2040. We expect per capita health spending to increase fastest in upper-middle-income countries, at 5.3% (UI 4.1-6.8) per year. This growth is driven by continued growth in GDP, government spending, and government health spending. Lower-middle income countries are expected to grow at 4.2% (3.8-4.9). High-income countries are expected to grow at 2.1% (UI 1.8-2.4) and low-income countries are expected to grow at 1.8% (1.0-2.8). Despite this growth, health spending per capita in low-income countries is expected to remain low, at 154(UI133181)percapitain2030and154 (UI 133-181) per capita in 2030 and 195 (157-258) per capita in 2040. Increases in national health spending to reach the level of the countries who spend the most on health, relative to their level of economic development, would mean $321 (157-258) per capita was available for health in 2040 in low-income countries. Interpretation Health spending is associated with economic development but past trends and relationships suggest that spending will remain variable, and low in some low-resource settings. Policy change could lead to increased health spending, although for the poorest countries external support might remain essential.Peer reviewe

    The global burden of tuberculosis: results from the Global Burden of Disease Study 2015

    Get PDF
    Background: An understanding of the trends in tuberculosis incidence, prevalence, and mortality is crucial to tracking of the success of tuberculosis control programmes and identification of remaining challenges. We assessed trends in the fatal and non-fatal burden of tuberculosis over the past 25 years for 195 countries and territories. Methods: We analysed 10 691 site-years of vital registration data, 768 site-years of verbal autopsy data, and 361 site-years of mortality surveillance data using the Cause of Death Ensemble model to estimate tuberculosis mortality rates. We analysed all available age-specific and sex-specific data sources, including annual case notifications, prevalence surveys, and estimated cause-specific mortality, to generate internally consistent estimates of incidence, prevalence, and mortality using DisMod-MR 2.1, a Bayesian meta-regression tool. We assessed how observed tuberculosis incidence, prevalence, and mortality differed from expected trends as predicted by the Socio-demographic Index (SDI), a composite indicator based on income per capita, average years of schooling, and total fertility rate. We also estimated tuberculosis mortality and disability-adjusted life-years attributable to the independent effects of risk factors including smoking, alcohol use, and diabetes. Findings: Globally, in 2015, the number of tuberculosis incident cases (including new and relapse cases) was 10·2 million (95% uncertainty interval 9·2 million to 11·5 million), the number of prevalent cases was 10·1 million (9·2 million to 11·1 million), and the number of deaths was 1·3 million (1·1 million to 1·6 million). Among individuals who were HIV negative, the number of incident cases was 8·8 million (8·0 million to 9·9 million), the number of prevalent cases was 8·9 million (8·1 million to 9·7 million), and the number of deaths was 1·1 million (0·9 million to 1·4 million). Annualised rates of change from 2005 to 2015 showed a faster decline in mortality (–4·1% [–5·0 to –3·4]) than in incidence (–1·6% [–1·9 to –1·2]) and prevalence (–0·7% [–1·0 to –0·5]) among HIV-negative individuals. The SDI was inversely associated with HIV-negative mortality rates but did not show a clear gradient for incidence and prevalence. Most of Asia, eastern Europe, and sub-Saharan Africa had higher rates of HIV-negative tuberculosis burden than expected given their SDI. Alcohol use accounted for 11·4% (9·3–13·0) of global tuberculosis deaths among HIV-negative individuals in 2015, diabetes accounted for 10·6% (6·8–14·8), and smoking accounted for 7·8% (3·8–12·0). Interpretation: Despite a concerted global effort to reduce the burden of tuberculosis, it still causes a large disease burden globally. Strengthening of health systems for early detection of tuberculosis and improvement of the quality of tuberculosis care, including prompt and accurate diagnosis, early initiation of treatment, and regular follow-up, are priorities. Countries with higher than expected tuberculosis rates for their level of sociodemographic development should investigate the reasons for lagging behind and take remedial action. Efforts to prevent smoking, alcohol use, and diabetes could also substantially reduce the burden of tuberculosis
    corecore