3 research outputs found

    Vanadium nitride/carbon nanotube nanocomposites as electrodes for supercapacitors

    No full text
    International audienceNanostructured vanadium nitride/multiwalled carbon nanotubes (VN/CNTs) composites for pseudo-capacitor applications were obtained via the sol–gel synthesis of organic or inorganic vanadium oxide precursors followed by temperature programmed ammonia reduction. Nitrogen adsorption and impedance spectroscopy measurements showed that the incorporation of CNTs during VN synthesis allows VN/CNTs nanocomposites to be obtained with higher porosity, narrower pore size distribution, better conductivity and improved electrochemical properties compared to VN without CNTs. In particular, cyclic voltammetry using three-electrode cells in KOH shows that the contribution of the redox peaks is increased when VN is associated with the carbon nanotubes. As a consequence, a capacitance increase was measured in the two-electrode system. Another important advantage of using VN/CNTs composites is their high capacitance retention (58%) at high current density (30 A g−1) compared with VN (7%), resulting in an enhancement of the energy density at high power. All these positive aspects were significantly more marked when CNTs were incorporated during VN synthesis compared to a material resulting from the physical mixture of VN with CNTs. TEM, XPS and Raman analyses point out that the enhanced electrochemical performance observed with the VN/CNTs composite could be related to an intimate contact between VN and the CNT network, a homogeneous distribution of VN on CNTs and the presence of an open mesoporous texture favouring the access of the electrolyte to the active material surface

    Structural Defects Play a Major Role in the Acute Lung Toxicity of Multiwall Carbon Nanotubes: Physicochemical Aspects.

    No full text
    Carbon nanotubes (CNT) have been reported to elicit toxic responses in vitro and in vivo, ascribed so far to metal contamination, CNT length, degree of oxidation, or extent of hydrophilicity. To examine how structural properties may modulate the toxicity of CNT, one preparation of multiwall CNT has been modified (i) by grinding (introducing structural defects) and subsequently heating either in a vacuum at 600 degrees C (causing reduction of oxygenated carbon functionalities and reduction of metallic oxides) or in an inert atmosphere at 2400 degrees C (causing elimination of metals and annealing of defects) and (ii) by heating at 2400 degrees C in an inert atmosphere and subsequently grinding the thermally treated CNT (introducing defects in a metal-deprived carbon framework). The presence of framework and surface defects, metals, and oxygenated functionalities was monitored by means of a set of techniques, including micro-Raman spectroscopy, adsorption calorimetry, X-ray photoelectron spectroscopy, inductively coupled plasma mass spectrometry, and atomic emission spectroscopy. Contrary to traditional toxicants, such as asbestos, CNT may quench rather than generate oxygenated free radicals. The potential of the modified CNT to scavenge hydroxyl radicals was thus evaluated by means of electron spin resonance spectroscopy (spin trapping). The original ground material exhibited a scavenging activity toward hydroxyl radicals, which was eliminated by heating at 2400 degrees C but restored upon grinding. This scavenging activity, related to the presence of defects, appears to go paired with the genotoxic and inflammatory potential of CNT reported in the companion paper. Thus, defects may be one of the major factors governing the toxic potential of CNT

    A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte

    Get PDF
    Two-dimensional transition metal carbides and nitrides, known as MXenes, are currently considered as energy storage materials. A generic Lewis acidic etching route for preparing high-rate negative-electrode MXenes with enhanced electrochemical performance in non-aqueous electrolyte is now proposed. Two-dimensional carbides and nitrides of transition metals, known as MXenes, are a fast-growing family of materials that have attracted attention as energy storage materials. MXenes are mainly prepared from Al-containing MAX phases (where A = Al) by Al dissolution in F-containing solution; most other MAX phases have not been explored. Here a redox-controlled A-site etching of MAX phases in Lewis acidic melts is proposed and validated by the synthesis of various MXenes from unconventional MAX-phase precursors with A elements Si, Zn and Ga. A negative electrode of Ti3C2 MXene material obtained through this molten salt synthesis method delivers a Li+ storage capacity of up to 738 C g(-1) (205 mAh g(-1)) with high charge-discharge rate and a pseudocapacitive-like electrochemical signature in 1 M LiPF6 carbonate-based electrolyte. MXenes prepared via this molten salt synthesis route may prove suitable for use as high-rate negative-electrode materials for electrochemical energy storage applications.Funding Agencies|National Natural Science Foundation of ChinaNational Natural Science Foundation of China [21671195, 91426304, 51902320, 51902319]; China Postdoctoral Science FoundationChina Postdoctoral Science Foundation [2018M642498]; China Scolarship Council; Agence Nationale de la Recherche (Labex STORE-EX)French National Research Agency (ANR); International Partnership Program of Chinese Academy of Sciences [174433KYSB20190019]; Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang; Ningbo top-talent team program; Fundamental Research Funds for the Central UniversitiesFundamental Research Funds for the Central Universities [YJ201886]; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University (faculty grant SFO-Mat-LiU) [2009 00971]; Knut and Alice Wallenberg FoundationKnut &amp; Alice Wallenberg Foundation [2016-0358]</p
    corecore