4,584 research outputs found
Dispersion aerosol indirect effect in turbulent clouds: Laboratory measurements of effective radius
Cloud optical properties are determined not only by the number density nd and mean radius áč of cloud droplets but also by the shape of the droplet size distribution. The change in cloud optical depth with changing nd, due to the change in distribution shape, is known as the dispersion effect. Droplet relative dispersion is defined as d=Ïr / áč . For the first time, a commonly used effective radius parameterization is tested in a controlled laboratory environment by creating a turbulent cloud. Stochastic condensation growth suggests d independent of nd for a nonprecipitating cloud, hence nearly zero albedo susceptibility due to the dispersion effect. However, for sizeâdependent removal, such as in a laboratory cloud or highly clean atmospheric conditions, stochastic condensation produces a weak dispersion effect. The albedo susceptibility due to turbulence broadening has the same sign as the Twomey effect and augments it by order 10%
Recommended from our members
Evidence for inertial droplet clustering in weakly turbulent clouds
Simultaneous observations of cloud droplet spatial statistics, cloud droplet size distribution and cloud turbulence were made during several cloud passages, including cumulus clouds and a stratus cloud. They provide evidence that inertial droplet clustering occurs even in weakly turbulent clouds. The measurements were made from the Airborne Cloud Turbulence Observation System suspended from a tethered balloon. For a profile through a stratus cloud with gradually changing droplet Stokes number, droplet clustering, quantified by the pair correlation function, is observed to be positively correlated with the droplet Stokes number. This implies that the droplet collision rate, which is relevant to drizzle formation via droplet coalescence, depends not only on the droplet size distribution, but also on the cloud turbulence. For cumulus clouds, the relation between droplet clustering and Stokes number seems more complicated. Stokes number is determined by measuring droplet size and local energy dissipation rate, the latter requiring highresolution air velocity measurements not possible on fast-flying aircraft
Molecular simulations reveal that heterogeneous ice nucleation occurs at higher temperatures in water under capillary tension
Homogeneous ice nucleation rates occur at higher temperatures when water is under tension, otherwise referred to as negative pressure. If also true for heterogeneous ice nucleation rates, then this phenomenon can result in higher heterogeneous freezing temperatures in water capillary bridges, pores, and other geometries where water is subjected to negative Laplace pressure. Using a molecular model of water freezing on a hydrophilic substrate, it is found that heterogeneous ice nucleation rates exhibit a similar temperature increase at negative pressures as homogeneous ice nucleation. For pressures ranging from from 1 atm to −1000 atm, the simulations reveal that the temperature corresponding to the heterogeneous nucleation rate coefficient jhet (m−2 s−1) increases linearly as a function of negative pressure, with a slope that can be approximately predicted by the water density anomaly and the latent heat of fusion at atmospheric pressure. Simulations of water in capillary bridges confirm that negative Laplace pressure within the water corresponds to an increase in heterogeneous freezing temperature. The freezing temperature in the water capillary bridges increases linearly with inverse capillary height (1/h). Varying the height and width of the capillary bridge reveals the role of geometric factors in heterogeneous ice nucleation. When substrate surfaces are separated by less than approximately h = 20 Angstroms the nucleation rate is enhanced and when the width of the capillary bridge is less than approximately 30 Angstroms the nucleation rate is suppressed. Ice nucleation does not occur in the region within 10 Angstroms of the air-water interface and shows a preference for nucleation in the region just beyond 10 Angstroms. These results help unify multiple lines of experimental evidence for enhanced nucleation rates due to reduced pressure, either resulting from surface geometry (Laplace pressure) or mechanical agitation of water droplets. This concept is relevant to the phenomenon of contact nucleation and could potentially play a role in a number of different heterogeneous nucleation or secondary ice mechanisms.</p
Effects of the Large-Scale Circulation on Temperature and Water Vapor Distributions in the Î Chamber
Microphysical processes are important for the development of clouds and thus Earth\u27s climate. For example, turbulent fluctuations in the water vapor concentration, r, and temperature, T, cause fluctuations in the saturation ratio, S. Because S is the driving factor in the condensational growth of droplets, fluctuations may broaden the cloud droplet size distribution due to individual droplets experiencing different growth rates. The small scale turbulent fluctuations in the atmosphere that are relevant to cloud droplets are difficult to quantify through field measurements. We investigate these processes in the laboratory, using Michigan Tech\u27s Î Chamber. The Î Chamber utilizes Rayleigh-Benard convection (RBC) to create the turbulent conditions inherent in clouds. In RBC it is common for a large scale circulation (LSC) to form. As a consequence of the LSC, the temperature field of the chamber is not spatially uniform. In this paper, we characterize the LSC in the Î chamber and show how it affects the shape of the distributions of r, T and S. The LSC was found to follow a single roll with an updraft and downdraft along opposing walls of the chamber. Near the updraft (downdraft), the distributions of T and r were positively (negatively) skewed. S consistently had a negatively skewed distribution, with the downdraft being the most negative
Fast and slow microphysics regimes in a minimalist model of cloudy Rayleigh-BĂ©nard convection
A minimalist model of microphysical properties in cloudy Rayleigh-BĂ©nard convection is developed based on mass and number balances for cloud droplets growing by vapor condensation. The model is relevant to a turbulent mixed-layer in which a steady forcing of supersaturation can be defined, e.g., a model of the cloudy boundary layer or a convection-cloud chamber. The model assumes steady injection of aerosol particles that are activated to form cloud droplets, and the removal of cloud droplets through sedimentation. Simplifying assumptions include the consideration of mean properties in steady state, neglect of coalescence growth, and no detailed representation of the droplet size distribution. Closed-form expressions for cloud droplet radius, number concentration, and liquid water content are derived. Limits of fast and slow microphysics, compared to the turbulent mixing time scale, are explored, and resulting expressions for the scaling of microphysical properties in fast and slow regimes are obtained. Scaling of microphysics with layer thickness is also explored, suggesting that liquid water content and cloud droplet number concentration increase, and mean droplet radius decreases with increasing layer thickness. Finally, the analytical model is shown to compare favorably to solutions of the fully-coupled set of governing ordinary differential equations that describe the system, and the predicted power law for liquid water mixing ratio versus droplet activation rate is observed to be consistent with measurements from the Pi convection-cloud chamber
Light scattering in a turbulent cloud: Simulations to explore cloud-chamber experiments
Radiative transfer through clouds can be impacted by variations in particle number size distribution, but also in particle spatial distribution. Due to turbulent mixing and inertial effects, spatial correlations often exist, even on scales reaching the cloud droplet separation distance. The resulting clusters and voids within the droplet field can lead to deviations from exponential extinction. Prior work has numerically investigated these departures from exponential attenuation in absorptive and scattering media; this work takes a step towards determining the feasibility of detecting departures from exponential behavior due to spatial correlation in turbulent clouds generated in a laboratory setting. Large Eddy Simulation (LES) is used to mimic turbulent mixing clouds generated in a laboratory convection cloud chamber. Light propagation through the resulting polydisperse and spatially correlated particle fields is explored via Monte Carlo ray tracing simulations. The key finding is that both mean radiative flux and standard deviation about the mean differ when correlations exist, suggesting that an experiment using a laboratory convection cloud chamber could be designed to investigate non-exponential behavior. Total forward flux is largely unchanged (due to scattering being highly forward-dominant for the size parameters considered), allowing it to be used for conditional sampling based on optical thickness. Direct and diffuse forward flux means are modified by approximately one standard deviation. Standard deviations of diffuse forward and backward fluxes are strongly enhanced, suggesting that fluctuations in the scattered light are a more sensitive metric to consider. The results also suggest the possibility that measurements of radiative transfer could be used to infer the strength and scales of correlations in a turbulent cloud, indicating entrainment and mixing effects
Characterization and first results from LACIS-T: a moist-air wind tunnel to study aerosol-cloud-turbulence interactions
The interactions between turbulence and cloud microphysical processes have been investigated primarily through numerical simulation and field measurements over the last 10 years. However, only in the laboratory we can be confident in our knowledge of initial and boundary conditions and are able to measure under statistically stationary and repeatable conditions. In the scope of this paper, we present a unique turbulent moist-air wind tunnel, called the Turbulent Leipzig Aerosol Cloud Interaction Simulator (LACIS-T) which has been developed at TROPOS in order to study cloud physical processes in general and interactions between turbulence and cloud microphysical processes in particular. The investigations take place under well-defined and reproducible turbulent and thermodynamic conditions covering the temperature range of warm, mixed-phase and cold clouds (25 °C > T > â40 °C). The continuous-flow design of the facility allows for the investigation of processes occurring on small temporal (up to a few seconds) and spatial scales (micrometer to meter scale) and with a Lagrangian perspective. The here-presented experimental studies using LACIS-T are accompanied and complemented by computational fluid dynamics (CFD) simulations which help us to design experiments as well as to interpret experimental results. In this paper, we will present the fundamental operating principle of LACIS-T, the numerical model, and results concerning the thermodynamic and flow conditions prevailing inside the wind tunnel, combining both characterization measurements and numerical simulations. Finally, the first results are depicted from deliquescence and hygroscopic growth as well as droplet activation and growth experiments. We observe clear indications of the effect of turbulence on the investigated microphysical processes
Characterization and first results from LACIS-T : a moist-air wind tunnel to study aerosolâcloudâturbulence interactions
The interactions between turbulence and cloud microphysical processes have been investigated primarily through numerical simulation and field measurements over the last 10 years. However, only in the laboratory we can be confident in our knowledge of initial and boundary conditions and are able to measure under statistically stationary and repeatable conditions. In the scope of this paper, we present a unique turbulent moist-air wind tunnel, called the Turbulent Leipzig Aerosol Cloud Interaction Simulator (LACIS-T) which has been developed at TROPOS in order to study cloud physical processes in general and interactions between turbulence and cloud microphysical processes in particular. The investigations take place under well-defined and reproducible turbulent and thermodynamic conditions covering the temperature range of warm, mixed-phase and cold clouds (25âC>T>â40âC
). The continuous-flow design of the facility allows for the investigation of processes occurring on small temporal (up to a few seconds) and spatial scales (micrometer to meter scale) and with a Lagrangian perspective. The here-presented experimental studies using LACIS-T are accompanied and complemented by computational fluid dynamics (CFD) simulations which help us to design experiments as well as to interpret experimental results.
In this paper, we will present the fundamental operating principle of LACIS-T, the numerical model, and results concerning the thermodynamic and flow conditions prevailing inside the wind tunnel, combining both characterization measurements and numerical simulations. Finally, the first results are depicted from deliquescence and hygroscopic growth as well as droplet activation and growth experiments. We observe clear indications of the effect of turbulence on the investigated microphysical processes
Measuring nitrogen and sulphur deposition in the Georgia Basin, British Columbia, using lichens and moss
Nitrogen (N) and sulphur (S) in the lichens Platismatia glauca, Parmelia sulcata and Hypogymnia physodes and a moss, Isothecium myosuroides in southwestern British Columbia was studied in a two component program. Firstly, relationships between lichen and moss tissue chemistry and atmospheric loading were explored using data collected at four regional air and precipitation chemistry monitoring sites in an effort to develop predictive models to estimate deposition. Secondly, the regional pattern of atmospheric N and S deposition was studied in a survey of lichen and moss tissue chemistry at fifty-seven locations in the Georgia Basin area. Results of the tissue chemistry was then compared to 1) modelled N and S deposition estimates and 2) lichen community structure response thresholds for N. The calibration component of this study was not successful owing to generally weak relationships between measured deposition and tissue N and S. Additional effort will be needed to define a functional relationship between N or S loading and tissue content. Correlations between the lichen and moss N content and model predictions were generally good. Correspondence between modelled S deposition and tissue content were more variable, but quite good for the dry S component. Nitrogen levels in lichen tissues suggest that lichen communities are probably being affected in urban areas and eastward into the Fraser Valley
- âŠ