2,260 research outputs found
Packing defects and the width of biopolymer bundles
The formation of bundles composed of actin filaments and cross-linking
proteins is an essential process in the maintenance of the cells' cytoskeleton.
It has also been recreated by in-vitro experiments, where actin networks are
routinely produced to mimic and study the cellular structures. It has long been
observed that these bundles seem to have a well defined width distribution,
which has not been adequately described theoretically. We propose here that
packing defects of the filaments, quenched and random, contribute an effective
repulsion that counters the cross-linking adhesion energy and leads to a well
defined bundle width. This is a two-dimensional strain-field version of the
classic Rayleigh instability of charged droplets
Whispering Gallery States of Antihydrogen
We study theoretically interference of the long-living quasistationary
quantum states of antihydrogen atoms, localized near a concave material
surface. Such states are an antimatter analog of the whispering gallery states
of neutrons and matter atoms, and similar to the whispering gallery modes of
sound and electro-magnetic waves. Quantum states of antihydrogen are formed by
the combined effect of quantum reflection from van der Waals/Casimir-Polder
(vdW/CP) potential of the surface and the centrifugal potential. We point out a
method for precision studies of quantum reflection of antiatoms from vdW/CP
potential; this method uses interference of the whispering gallery states of
antihydrogen.Comment: 13 pages 7 figure
"Ultimate state" of two-dimensional Rayleigh-Benard convection between free-slip fixed temperature boundaries
Rigorous upper limits on the vertical heat transport in two dimensional
Rayleigh-Benard convection between stress-free isothermal boundaries are
derived from the Boussinesq approximation of the Navier-Stokes equations. The
Nusselt number Nu is bounded in terms of the Rayleigh number Ra according to
uniformly in the Prandtl number Pr. This Nusselt
number scaling challenges some theoretical arguments regarding the asymptotic
high Rayleigh number heat transport by turbulent convection.Comment: 4 page
Diacritical study of light, electrons, and sound scattering by particles and holes
We discuss the differences and similarities in the interaction of scalar and
vector wave-fields with particles and holes. Analytical results are provided
for the transmission of isolated and arrayed small holes as well as surface
modes in hole arrays for light, electrons, and sound. In contrast to the
optical case, small-hole arrays in perforated perfect screens cannot produce
acoustic or electronic surface-bound states. However, unlike electrons and
light, sound is transmitted through individual holes approximately in
proportion to their area, regardless their size. We discuss these issues with a
systematic analysis that allows exploring both common properties and unique
behavior in wave phenomena for different material realizations.Comment: 3 figure
The complement: a solution to liquid drop finite size effects in phase transitions
The effects of the finite size of a liquid drop undergoing a phase transition
are described in terms of the complement, the largest (but still mesoscopic)
drop representing the liquid in equilibrium with the vapor. Vapor cluster
concentrations, pressure and density from fixed mean density lattice gas
(Ising) model calculations are explained in terms of the complement. Accounting
for this finite size effect is key to determining the infinite nuclear matter
phase diagram from experimental data.Comment: Four two column pages, four figures, two tables; accepted for
publication in PR
Nature of acoustic nonlinear radiation stress
When a fluid is insonified with ultrasound, a flow consequence of a net stress becomes observable, which has been described as acoustic streaming, quartz wind, acoustic radiation force or acoustic fountain. Following Sir James Lighthill's formulation of the Reynold's streaming, these phenomena have been attributed to a cumulative viscous effect. Instead, a new multiscale effect, whereby the constitutive elastic nonlinearity scales from the ultrasonic to the macroscopic time, is here proposed and formulated to explain its origin. This raises a new term in the Navier-Stokes equation, which ultimately stems from the anharmonicity of the atomic potential. In our experimental validation, this theory is consistent in water and for a range of ultrasonic configurations, whereas the formerly established viscous theory fails by an order of magnitude. This ultrasonic-fluid interaction, called nonlinear mechanical radiation since it is able to remotely exert a stress field, correctly explains a wide range of industrial and biomedical active ultrasonic uses including jet engines, acoustic tweezers, cyanobacteria propulsion mechanisms, nanofluidics or acoustic radiation force elastography.Ministerio de EconomĂa y Competitividad (Spain) for Project DPI2010-17065, and Junta de AndalucĂa for Projects P11-CTS-8089 and GGI3000IDIB
Event Weighted Tests for Detecting Periodicity in Photon Arrival Times
This paper treats the problem of detecting periodicity in a sequence of
photon arrival times, which occurs, for example, in attempting to detect
gamma-ray pulsars. A particular focus is on how auxiliary information,
typically source intensity, background intensity, and incidence angles and
energies associated with each photon arrival should be used to maximize the
detection power. We construct a class of likelihood-based tests, score tests,
which give rise to event weighting in a principled and natural way, and derive
expressions quantifying the power of the tests. These results can be used to
compare the efficacies of different weight functions, including cuts in energy
and incidence angle. The test is targeted toward a template for the periodic
lightcurve, and we quantify how deviation from that template affects the power
of detection
Creating exotic condensates via quantum-phase-revival dynamics in engineered lattice potentials
In the field of ultracold atoms in optical lattices a plethora of phenomena
governed by the hopping energy and the interaction energy have been
studied in recent years. However, the trapping potential typically present in
these systems sets another energy scale and the effects of the corresponding
time scale on the quantum dynamics have rarely been considered. Here we study
the quantum collapse and revival of a lattice Bose-Einstein condensate (BEC) in
an arbitrary spatial potential, focusing on the special case of harmonic
confinement. Analyzing the time evolution of the single-particle density
matrix, we show that the physics arising at the (temporally) recurrent quantum
phase revivals is essentially captured by an effective single particle theory.
This opens the possibility to prepare exotic non-equilibrium condensate states
with a large degree of freedom by engineering the underlying spatial lattice
potential.Comment: 9 pages, 6 figure
Multi-focal laser surgery: cutting enhancement by hydrodynamic interactions between cavitation bubbles
Transparent biological tissues can be precisely dissected with ultrafast
lasers using optical breakdown in the tight focal zone. Typically, tissues are
cut by sequential application of pulses, each of which produces a single
cavitation bubble. We investigate the hydrodynamic interactions between
simultaneous cavitation bubbles originating from multiple laser foci.
Simultaneous expansion and collapse of cavitation bubbles can enhance the
cutting efficiency by increasing the resulting deformations in tissue, and the
associated rupture zone. An analytical model of the flow induced by the bubbles
is presented and experimentally verified. The threshold strain of the material
rupture is measured in a model tissue. Using the computational model and the
experimental value of the threshold strain one can compute the shape of the
rupture zone in tissue resulting from application of multiple bubbles. With the
threshold strain of 0.7 two simultaneous bubbles produce a continuous cut when
applied at the distance 1.35 times greater than that required in sequential
approach. Simultaneous focusing of the laser in multiple spots along the line
of intended cut can extend this ratio to 1.7. Counter-propagating jets forming
during collapse of two bubbles in materials with low viscosity can further
extend the cutting zone - up to a factor of 1.54.Comment: 16 pages, 8 figures. Paper is accepted for publication in Physical
Review
The impact of diffusion on confined oscillated bubbly fluid
We consider the dynamics of monodisperse bubbly fluid confined by two plane
solid walls and subjected to small-amplitude high-frequency transversal
oscillations. The frequency these oscillations is assumed to be high in
comparison with typical relaxation times for a single bubble, but comparable
with the eigenfrequency of volume oscillations. A time-averaged description
accounting for mutual coupling of the phases and the diffusivity of bubbles is
applied. We find nonuniform steady states with the liquid quiescent on average.
At relatively low frequencies accumulation of bubbles either at the walls or in
planes oriented parallel to the walls is detected. These one-dimensional states
are shown to be unstable. At relatively high frequencies the bubbles accumulate
at the central plane and the solution is stable.Comment: 12 pages, 9 figures, submitted to Phys. Fluid
- …