1,360 research outputs found

    An electrochemical system for the study of trans-plasma membrane electron transport in whole eukaryotic cells

    Get PDF
    The development of new assays to study trans-plasma membrane electron transport (tPMET) in eukaryotic systems is paramount for a number reasons, which include the further understanding of the underlying biology which can then potentially be applied to innovate technological advancements in biosensing, microbial fuel, and pharmaceutical fields. The current literature provides methodology to study these systems that hinges upon mitochondrial knockout genotypes, or the detection of ferrocyanide using colorimetric methods. Developing a method to simultaneously analyze the redox state of a reporter molecule would give advantages in probing the underlying biology. Herein we present an electrochemical based method that allows for the quantification of both ferricyanide and ferrocyanide redox states to a highly sensitive degree. We have applied this system to a novel application of assessing oncogenic cell-driven iron reduction, and have shown that it can effectively quantitate and identify differences in iron reduction capability of three lung epithelial cell lines. Importantly, the development of the technology has led to new biological hypothesis which now need addressing

    An electrochemical system for the study of trans-plasma membrane electron transport in whole eukaryotic cells

    Get PDF
    The development of new assays to study trans-plasma membrane electron transport (tPMET) in eukaryotic systems is paramount for a number reasons, which include the further understanding of the underlying biology which can then potentially be applied to innovate technological advancements in biosensing, microbial fuel, and pharmaceutical fields. The current literature provides methodology to study these systems that hinges upon mitochondrial knockout genotypes, or the detection of ferrocyanide using colorimetric methods. Developing a method to simultaneously analyze the redox state of a reporter molecule would give advantages in probing the underlying biology. Herein we present an electrochemical based method that allows for the quantification of both ferricyanide and ferrocyanide redox states to a highly sensitive degree. We have applied this system to a novel application of assessing oncogenic cell-driven iron reduction, and have shown that it can effectively quantitate and identify differences in iron reduction capability of three lung epithelial cell lines. Importantly, the development of the technology has led to new biological hypothesis which now need addressing

    New Perspectives on Iron Uptake in Eukaryotes

    Get PDF
    All eukaryotic organisms require iron to function. Malfunctions within iron homeostasis have a range of physiological consequences, and can lead to the development of pathological conditions that can result in an excess of non-transferrin bound iron (NTBI). Despite extensive understanding of iron homeostasis, the links between the “macroscopic” transport of iron across biological barriers (cellular membranes) and the chemistry of redox changes that drive these processes still needs elucidating. This review draws conclusions from the current literature, and describes some of the underlying biophysical and biochemical processes that occur in iron homeostasis. By first taking a broad view of iron uptake within the gut and subsequent delivery to tissues, in addition to describing the transferrin and non-transferrin mediated components of these processes, we provide a base of knowledge from which we further explore NTBI uptake. We provide concise up-to-date information of the transplasma electron transport systems (tPMETSs) involved within NTBI uptake, and highlight how these systems are not only involved within NTBI uptake for detoxification but also may play a role within the reduction of metabolic stress through regeneration of intracellular NAD(P)H/NAD(P)+ levels. Furthermore, we illuminate the thermodynamics that governs iron transport, namely the redox potential cascade and electrochemical behavior of key components of the electron transport systems that facilitate the movement of electrons across the plasma membrane to the extracellular compartment. We also take account of kinetic changes that occur to transport iron into the cell, namely membrane dipole change and their consequent effects within membrane structure that act to facilitate transport of ions

    Mechanistic insight into heterogeneity of trans-plasma membrane electron transport in cancer cell types

    Get PDF
    Trans-plasma membrane electron transfer (tMPET) is a process by which reducing equivalents, either electrons or reductants like ascorbic acid, are exported to the extracellular environment by the cell. TPMET is involved in a number of physiological process and has been hypothesised to play a role in the redox regulation of cancer metabolism. Here, we use a new electrochemical assay to elucidate the ‘preference’ of cancer cells for different trans tPMET systems. This aids in proving a biochemical framework for the understanding of tPMET role, and for the development of novel tPMET-targeting therapeutics. We have delineated the mechanism of tPMET in 3 lung cancer cell models to show that the external electron transfer is orchestrated by ascorbate mediated shuttling via tPMET. In addition, the cells employ a different, non-shuttling-based mechanism based on direct electron transfer via Dcytb. Results from our investigations indicate that tPMETs are used differently, depending on the cell type. The data generated indicates that tPMETs may play a fundamental role in facilitation of energy reprogramming in malignant cells, whereby tPMETs are utilised to supply the necessary energy requirement when mitochondrial stress occurs. Our findings instruct a deeper understanding of tPMET systems, and show how different cancer cells may preferentially use distinguishable tPMET systems for cellular electron transfer processes

    Glassy Phase Transition and Stability in Black Holes

    Full text link
    Black hole thermodynamics, confined to the semi-classical regime, cannot address the thermodynamic stability of a black hole in flat space. Here we show that inclusion of correction beyond the semi-classical approximation makes a black hole thermodynamically stable. This stability is reached through a phase transition. By using Ehrenfest's scheme we further prove that this is a glassy phase transition with a Prigogine-Defay ratio close to 3. This value is well placed within the desired bound (2 to 5) for a glassy phase transition. Thus our analysis indicates a very close connection between the phase transition phenomena of a black hole and glass forming systems. Finally, we discuss the robustness of our results by considering different normalisations for the correction term.Comment: v3, minor changes over v2, references added, LaTeX-2e, 18 pages, 3 ps figures, to appear in Eour. Phys. Jour.

    The Hubble Space Telescope Extragalactic Distance Scale Key Project. X. The Cepheid Distance to NGC 7331

    Full text link
    The distance to NGC 7331 has been derived from Cepheid variables observed with HST/WFPC2, as part of the Extragalactic Distance Scale Key Project. Multi-epoch exposures in F555W (V) and F814W (I), with photometry derived independently from DoPHOT and DAOPHOT/ALLFRAME programs, were used to detect a total of 13 reliable Cepheids, with periods between 11 and 42 days. The relative distance moduli between NGC 7331 and the LMC, imply an extinction to NGC 7331 of A_V = 0.47+-0.15 mag, and an extinction-corrected distance modulus to NGC 7331 of 30.89+-0.14(random) mag, equivalent to a distance of 15.1 Mpc. There are additional systematic uncertainties in the distance modulus of +-0.12 mag due to the calibration of the Cepheid Period-Luminosity relation, and a systematic offset of +0.05+-0.04 mag if we applied the metallicity correction inferred from the M101 results of Kennicutt et al 1998.Comment: To be published in The Astrophysical Journal, 1998 July 1, v501 note: Figs 1 and 2 (JPEG files) and Fig 7 (multipage .eps file) need to be viewed/printed separatel

    Qualitative theory testing as mixed-method research

    Get PDF
    While the concept of mixed-methods research is more usually associated with combining quantitative and qualitative approaches, this paper outlines a study that mixed methods by undertaking qualitative theory testing and derivation when examining the relationship between health promotion theory and hospital nursing practice. Thus, it is concerned with relating the metatheoretical aspects of the debate and not with the pragmatic aspects of the research and concomitant methods. A deductive–inductive–deductive design, based on the theory–research–theory strategy of Meleis (1985), tested, revised and developed for nursing established health promotion theory using theory-testing criteria. To complement the methodological mix, the study also used the theory (i.e. a health-promotion taxonomy) as a framework to contextualise the findings rather than generate theory in the way associated with interpretative inquiry. While inconsistent with the traditional view linking theory testing with quantitative, objective epistemology, the process enabled a theoretically robust health-promotion taxonomy to be synthesised and advanced for use in nursing in relation to a paradigm of social thought

    THINGS about MOND

    Get PDF
    We present the analysis of 12 high-resolution galactic rotation curves from The HI Nearby Galaxy Survey (THINGS) in the context of modified Newtonian dynamics (MOND). These rotation curves were selected to be the most reliable for mass modelling, and they are the highest quality rotation curves currently available for a sample of galaxies spanning a wide range of luminosities. We fit the rotation curves with the "simple" and "standard" interpolating functions of MOND, and we find that the "simple" function yields better results. We also redetermine the value of a0, and find a median value very close to the one determined in previous studies, a0 = (1.22 +- 0.33) x 10^{-8} cm/s^2. Leaving the distance as a free parameter within the uncertainty of its best independently determined value leads to excellent quality fits for 75% of the sample. Among the three exceptions, two are also known to give relatively poor fits also in Newtonian dynamics plus dark matter. The remaining case (NGC 3198), presents some tension between the observations and the MOND fit, which might however be explained by the presence of non-circular motions, by a small distance, or by a value of a0 at the lower end of our best-fit interval, 0.9 x 10^{-8} cm/s^2. The best-fit stellar M/L ratios are generally in remarkable agreement with the predictions of stellar population synthesis models. We also show that the narrow range of gravitational accelerations found to be generated by dark matter in galaxies is consistent with the narrow range of additional gravity predicted by MOND.Comment: Accepted for publication in A&A. 12 pages, 11 figure

    Development of a web-based tool for undergraduate engagement in medical research; the ProjectPal experience.

    Get PDF
    BACKGROUND: We report the development and evaluation of a web-based tool designed to facilitate student extra-curricular engagement in medical research through project matching students with academic supervisors. UK based university students were surveyed to explore their perceptions of undergraduate research, barriers and facilitators to current engagement. Following this, an online web-based intervention ( www.ProjectPal.org ) was developed to support access of students to research projects and supervisors. A pilot intervention was undertaken across a London-based university in January 2013 to February 2016. In March 2016, anonymised data were extracted from the prospective data log for analysis of website engagement and usage. Supervisors were surveyed to evaluate the website and student outputs. RESULTS: Fifty-one students responded to the electronic survey. Twenty-four (47%) reported frustration at a perceived lack of opportunities to carry out extra-curricular academic projects. Major barriers to engaging in undergraduate research reported were difficulties in identifying suitable supervisors (33/51; 65%) and time pressures (36/51; 71%) associated with this. Students reported being opportunistic in their engagement with undergraduate research. Following implementation of the website, 438 students signed up to ProjectPal and the website was accessed 1357 times. Access increased on a yearly basis. Overall, 70 projects were advertised by 35 supervisors. There were 86 applications made by students for these projects. By February 2016, the 70 projects had generated 5 peer-review publications with a further 7 manuscripts under peer-review, 14 national presentations, and 1 national prize. CONCLUSION: The use of an online platform to promote undergraduate engagement with extra-curricular research appears to facilitate extra-curricular engagement with research. Further work to understand the impact compared to normal opportunistic practices in enhancing student engagement is now underway
    corecore