16 research outputs found
Evolution in the Fast Lane: Rapidly Evolving Sex-Related Genes in Drosophila
A large portion of the annotated genes in Drosophila melanogaster show sex-biased expression, indicating that sex and reproduction-related genes (SRR genes) represent an appreciable component of the genome. Previous studies, in which subsets of genes were compared among few Drosophila species, have found that SRR genes exhibit unusual evolutionary patterns. Here, we have used the newly released genome sequences from 12 Drosophila species, coupled to a larger set of SRR genes, to comprehensively test the generality of these patterns. Among 2505 SRR genes examined, including ESTs with biased expression in reproductive tissues and genes characterized as involved in gametogenesis, we find that a relatively high proportion of SRR genes have experienced accelerated divergence throughout the genus Drosophila. Several testis-specific genes, male seminal fluid proteins (SFPs), and spermatogenesis genes show lineage-specific bursts of accelerated evolution and positive selection. SFP genes also show evidence of lineage-specific gene loss and/or gain. These results bring us closer to understanding the details of the evolutionary dynamics of SRR genes with respect to species divergence
Functional male accessory glands and fertility in Drosophila require novel ecdysone receptor
<div><p>In many insects, the accessory gland, a secretory tissue of the male reproductive system, is essential for male fertility. Male accessory gland is the major source of proteinaceous secretions, collectively called as seminal proteins (or accessory gland proteins), which upon transfer, manipulate the physiology and behavior of mated females. Insect hormones such as ecdysteroids and juvenoids play a key role in accessory gland development and protein synthesis but little is known about underlying molecular players and their mechanism of action. Therefore, in the present study, we examined the roles of hormone-dependent transcription factors (Nuclear Receptors), in accessory gland development, function and male fertility of a genetically tractable insect model, <i>Drosophila melanogaster</i>. First, we carried out an RNAi screen involving 19 hormone receptors, individually and specifically, in a male reproductive tissue (accessory gland) for their requirement in Drosophila male fertility. Subsequently, by using independent RNAi/ dominant negative forms, we show that Ecdysone Receptor (EcR) is essential for male fertility due to its requirement in the normal development of accessory glands in Drosophila: EcR depleted glands fail to make seminal proteins and have dying cells. Further, our data point to a novel ecdysone receptor that does not include Ultraspiracle but is probably comprised of EcR isoforms in Drosophila male accessory glands. Our data suggest that this novel ecdysone receptor might act downstream of homeodomain transcription factor paired (prd) in the male accessory gland. Overall, the study suggests novel ecdysone receptor as an important player in the hormonal regulation of seminal protein production and insect male fertility.</p></div