725 research outputs found
Orbital Magnetism of 2D Chaotic Lattices
We study the orbital magnetism of 2D lattices with chaotic motion of
electrons withing a primitive cell. Using the temperature diagrammatic
technique we evaluate the averaged value and rms fluctuation of magnetic
response in the diffusive regime withing the model of non-interacting
electrons. The fluctuations of magnetic susceptibility turn out to be large and
at low temperature can be of the order of , where
is the Fermi wavevector, is the mean free path, and is
the Landau susceptibility. In the certain region of magnetic fields the
paramagnetic contribution to the averaged response is field independent and
larger than the absolute value of Landau response.Comment: 6 pages, Latex file, figures available upon reques
Reactive Magnetron Sputtering of ZrO2/Al2O3 Coatings: Alumina Content and Structure Stability
Ternary zirconia-alumina coatings with different compositional ratios, ranging from pure zirconia to 50% alumina content, were deposited by reactive sputtering from two targets, Zr and Al, in argon-oxygen mixtures. The coating composition was controlled by the Zr/Al target power ratio provided by two pulsed-DC power supplies. The coatings were ~1 µm thick and they were deposited on floating potential substrates at a temperature of 650±3K.
XRD indicated that the pure zirconia coatings possessed a monoclinic structure with a grain size of 35-40 nm. Adding alumina to the zirconia coating stabilized the cubic zirconia phase and decreased the grain size to 10-15 nm. The alumina phase in the coatings remained amorphous. The hardness of the nanocomposite structure increased from 11.6±0.5 GPa to 16.1±0.5 GPa for an alumina content of 17%. At higher alumina concentrations, the zirconia phase became amorphous and the hardness decreased to 10-11 GPa.
Structure stability of the zirconia-alumina coatings was studied by measuring the coating structure and hardness after annealing at temperatures up to 1173 K. Pure zirconia (m-ZrO2) coatings had low structure stability; the hardness reached a maximum value of 18±1 GPa after annealing at a temperature of 773-873K; however, at higher annealing temperatures the hardness decreased, reaching a minimum value of 12.3±0.6 GPa after annealing at 1173K. The hardness of the nanocomposite ZrO2/Al2O3 coating with various compositions increased with annealing temperature. The hardness of a coating with an alumina content of 17% reached a high value of 19.2±0.5 GPa after annealing at 1073-1173 K. Measurements of post annealing XRD analyses indicated that the stabilization of the coating structure with c-ZrO2/a-Al2O3 phases is the reason for the higher structure stability. From the analyses of phase stability and hardness before and after annealing, we conclude that adding alumina to the zirconia phase promotes the formation of nanocomposite c-ZrO2/a-Al2O3 coatings with a markedly higher stability than single-phase m-ZrO2.
Highlights:
1. ZrO2/Al2O3 nanocomposite coatings were deposited by co-sputtering from Zr and Al targets.
2. Adding alumina to the zirconia coating stabilized the cubic zirconia phase.
3. ZrO2-17% Al2O3 coatings had a grain size of 10-15 nm and a hardness of 16.1±0.5 GPa.
4. ZrO2/Al2O3 coatings maintained a high hardness after annealing at 1173K with a high value of 19 GPa for alumina content of 17%.
5. The ZrO2/Al2O3 nanocomposite coatings were crack-free after annealing at 1173K
Thermal Stability of Filtered Vacuum Arc Deposited Er2O3 Coatings
Erbium oxide (Er2O3) coatings were deposited using filtered vacuum arc deposition (FVAD) and their structure and thermal stability were studied as a function of fabrication parameters. The coatings were deposited on silicon wafer and tantalum substrates with an arc current of 50 A and a deposition rate of 1.6 ± 0.4 nm/s. The arc was sustained on truncated cone Er cathodes. The influence of oxygen pressure (P= 0.40-0.93 Pa), bias voltage (Vb= -20, -40 or grounded) and substrate temperature (room temperature (RT) or 673K) on film properties was studied before and after post deposition annealing (1273K for 1 hour, at P~ 1.33 Pa). The coatings were characterized using X-ray diffraction (XRD), optical microscopy, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and Knoop Hardness.
Optical microscope images indicated that the coatings had very low macroparticle concentration on their surface. The macroparticle diameters were less than 2.5 μm. The coatings were composed of only Er2O3 without any metallic phase under all deposition parameters tested. The coatings deposited on RT substrates were XRD amorphous and had a featureless cross-section microstructure. However, the coatings deposited on 673K heated substrates had a C-Er2O3 structure with (222) preferred orientation and weak columnar microstructure. The coating hardness varied with deposition pressure and substrate bias, and reached a maximum value of 10 GPa at P = 0.4 Pa and Vb = -40 V. The post-deposition annealing caused crystallization, and the coatings hardness dropped to 4 GPa with thermal treatment. However, after post-deposition annealing, no peeling or cracking appeared at the coating surface or the interface with the substrate
Toward an Unsteady Aerodynamic ROM for Multiple Mach Regimes
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/97065/1/AIAA2012-1708.pd
Linking compound weather extremes to Mediterranean cyclones, fronts, and airstreams
This is the final version. Available from Copernicus Publications via the DOI in this record. Data availability. ERA5 reanalysis is publicly available at
https://doi.org/10.24381/cds.adbb2d47 (Hersbach et al., 2023).
Mediterranean cyclone tracks are provided as a supplement of
Flaounas et al. (2023).Code availability. The code is not publicly accessible. The computations used for this work reduce to the simple frequency statistics
described in Sect. 2.4.Mediterranean cyclones are the primary driver of many types of surface weather extremes in the Mediterranean region, the association with extreme rainfall being the most established. The large-scale characteristics of a Mediterranean cyclone, the properties of the associated airflows and temperature fronts, the interaction with the Mediterranean Sea and with the topography around the basin, and the season of occurrence all contribute to determining its surface impacts. Here, we take these factors into account to interpret the statistical links between Mediterranean cyclones and compound extremes of two types, namely co-occurring rain-wind and wave-wind extremes. Compound extremes are attributed to a cyclone if they fall within a specially defined Mediterranean cyclone impact area. Our results show that the majority of Mediterranean rain-wind and wave-wind extremes occur in the neighbourhood of a Mediterranean cyclone, with local peaks exceeding 80 %. The fraction of compounds happening within a cyclone's impact area is highest when considering transition seasons and for rain-wind events compared with wave-wind events. Winter cyclones, matching with the peak occurrence of large and distinctively baroclinic cyclones, are associated with the highest compound frequency. A novel deconstruction of cyclones' impact areas based on the presence of objectively identified airstreams and fronts reveals a high incidence of both types of compound extremes below warm conveyor belt ascent regions and of wave-wind extremes below regions of dry intrusion outflow.Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen ForschungIsrael Science FoundationDe Botton Center for Marine Science at the Weizmann Institute of Scienc
Dermatosis neglecta in a case of multiple fractures, shoulder dislocation and radial nerve palsy in a 35-year-old man: a case report
<p>Abstract</p> <p>Introduction</p> <p>Dermatosis neglecta is an often misdiagnosed and under-diagnosed condition. In dermatosis neglecta, a progressive accumulation of sebum, sweat, keratin and other dirt and debris, occurs due to inadequate local hygiene resulting in a localized hyperpigmented patch or a verrucous plaque. Vigorous rubbing with alcohol-soaked gauze or soap and water results in a complete resolution of the lesion. This is the first case of dermatosis neglecta reported in a patient with multiple traumatic injuries.</p> <p>Case presentation</p> <p>We report a case of a 35-year-old male Caucasian of Pakistani origin, with multiple fractures, neurological deficit and immobility sustained in a fall, leading to the development of dermatosis neglecta of the left hand.</p> <p>Conclusion</p> <p>Early and prompt clinical recognition of this condition eliminates the need for aggressive diagnostic and therapeutic procedures.</p
Kinetic modelling of competition and depletion of shared miRNAs by competing endogenous RNAs
Non-conding RNAs play a key role in the post-transcriptional regulation of
mRNA translation and turnover in eukaryotes. miRNAs, in particular, interact
with their target RNAs through protein-mediated, sequence-specific binding,
giving rise to extended and highly heterogeneous miRNA-RNA interaction
networks. Within such networks, competition to bind miRNAs can generate an
effective positive coupling between their targets. Competing endogenous RNAs
(ceRNAs) can in turn regulate each other through miRNA-mediated crosstalk.
Albeit potentially weak, ceRNA interactions can occur both dynamically,
affecting e.g. the regulatory clock, and at stationarity, in which case ceRNA
networks as a whole can be implicated in the composition of the cell's
proteome. Many features of ceRNA interactions, including the conditions under
which they become significant, can be unraveled by mathematical and in silico
models. We review the understanding of the ceRNA effect obtained within such
frameworks, focusing on the methods employed to quantify it, its role in the
processing of gene expression noise, and how network topology can determine its
reach.Comment: review article, 29 pages, 7 figure
Lactobacillus rhamnosus GG-supplemented formula expands butyrate-producing bacterial strains in food allergic infants.
Dietary intervention with extensively hydrolyzed casein formula supplemented with Lactobacillus rhamnosus GG (EHCF+LGG) accelerates tolerance acquisition in infants with cow's milk allergy (CMA). We examined whether this effect is attributable, at least in part, to an influence on the gut microbiota. Fecal samples from healthy controls (n=20) and from CMA infants (n=19) before and after treatment with EHCF with (n=12) and without (n=7) supplementation with LGG were compared by 16S rRNA-based operational taxonomic unit clustering and oligotyping. Differential feature selection and generalized linear model fitting revealed that the CMA infants have a diverse gut microbial community structure dominated by Lachnospiraceae (20.5±9.7%) and Ruminococcaceae (16.2±9.1%). Blautia, Roseburia and Coprococcus were significantly enriched following treatment with EHCF and LGG, but only one genus, Oscillospira, was significantly different between infants that became tolerant and those that remained allergic. However, most tolerant infants showed a significant increase in fecal butyrate levels, and those taxa that were significantly enriched in these samples, Blautia and Roseburia, exhibited specific strain-level demarcations between tolerant and allergic infants. Our data suggest that EHCF+LGG promotes tolerance in infants with CMA, in part, by influencing the strain-level bacterial community structure of the infant gut
Orbital Magnetism in the Ballistic Regime: Geometrical Effects
We present a general semiclassical theory of the orbital magnetic response of
noninteracting electrons confined in two-dimensional potentials. We calculate
the magnetic susceptibility of singly-connected and the persistent currents of
multiply-connected geometries. We concentrate on the geometric effects by
studying confinement by perfect (disorder free) potentials stressing the
importance of the underlying classical dynamics. We demonstrate that in a
constrained geometry the standard Landau diamagnetic response is always
present, but is dominated by finite-size corrections of a quasi-random sign
which may be orders of magnitude larger. These corrections are very sensitive
to the nature of the classical dynamics. Systems which are integrable at zero
magnetic field exhibit larger magnetic response than those which are chaotic.
This difference arises from the large oscillations of the density of states in
integrable systems due to the existence of families of periodic orbits. The
connection between quantum and classical behavior naturally arises from the use
of semiclassical expansions. This key tool becomes particularly simple and
insightful at finite temperature, where only short classical trajectories need
to be kept in the expansion. In addition to the general theory for integrable
systems, we analyze in detail a few typical examples of experimental relevance:
circles, rings and square billiards. In the latter, extensive numerical
calculations are used as a check for the success of the semiclassical analysis.
We study the weak-field regime where classical trajectories remain essentially
unaffected, the intermediate field regime where we identify new oscillations
characteristic for ballistic mesoscopic structures, and the high-field regime
where the typical de Haas-van Alphen oscillations exhibit finite-size
corrections. We address the comparison with experimental data obtained in
high-mobility semiconductor microstructures discussing the differences between
individual and ensemble measurements, and the applicability of the present
model.Comment: 88 pages, 15 Postscript figures, 3 further figures upon request, to
appear in Physics Reports 199
Effect of promoter architecture on the cell-to-cell variability in gene expression
According to recent experimental evidence, the architecture of a promoter,
defined as the number, strength and regulatory role of the operators that
control the promoter, plays a major role in determining the level of
cell-to-cell variability in gene expression. These quantitative experiments
call for a corresponding modeling effort that addresses the question of how
changes in promoter architecture affect noise in gene expression in a
systematic rather than case-by-case fashion. In this article, we make such a
systematic investigation, based on a simple microscopic model of gene
regulation that incorporates stochastic effects. In particular, we show how
operator strength and operator multiplicity affect this variability. We examine
different modes of transcription factor binding to complex promoters
(cooperative, independent, simultaneous) and how each of these affects the
level of variability in transcription product from cell-to-cell. We propose
that direct comparison between in vivo single-cell experiments and theoretical
predictions for the moments of the probability distribution of mRNA number per
cell can discriminate between different kinetic models of gene regulation.Comment: 35 pages, 6 figures, Submitte
- …