52 research outputs found
Technological advancements in the analysis of human motion and posture management through digital devices
Technological development of motion and posture analyses is rapidly progressing, especially in rehabilitation settings and sport biomechanics. Consequently, clear discrimination among different measurement systems is required to diversify their use as needed. This review aims to resume the currently used motion and posture analysis systems, clarify and suggest the appropriate approaches suitable for specific cases or contexts. The currently gold standard systems of motion analysis, widely used in clinical settings, present several limitations related to marker placement or long procedure time. Fully automated and markerless systems are overcoming these drawbacks for conducting biomechanical studies, especially outside laboratories. Similarly, new posture analysis techniques are emerging, often driven by the need for fast and non-invasive methods to obtain high-precision results. These new technologies have also become effective for children or adolescents with non-specific back pain and postural insufficiencies. The evolutions of these methods aim to standardize measurements and provide manageable tools in clinical practice for the early diagnosis of musculoskeletal pathologies and to monitor daily improvements of each patient. Herein, these devices and their uses are described, providing researchers, clinicians, orthopedics, physical therapists, and sports coaches an effective guide to use new technologies in their practice as instruments of diagnosis, therapy, and prevention
Neuroprotective Effects of Physical Activity via the Adaptation of Astrocytes
The multifold benefits of regular physical exercise have been largely demonstrated in human and animal models. Several studies have reported the beneficial effects of physical activity, both in peripheral tissues and in the central nervous system (CNS). Regular exercise improves cognition, brain plasticity, neurogenesis and reduces the symptoms of neurodegenerative diseases, making timeless the principle of "mens sana in corpore sano" (i.e., a healthy mind in a healthy body). Physical exercise promotes morphological and functional changes in the brain, acting not only in neurons but also in astrocytes, which represent the most numerous glial cells in the brain. The multiple effects of exercise on astrocytes comprise the increased number of new astrocytes, the maintenance of basal levels of catecholamine, the increase in glutamate uptake, the major release of trophic factors and better astrocytic coverage of cerebral blood vessels. The purpose of this review is to highlight the effects of exercise on brain function, emphasize the role of astrocytes in the healthy CNS, and provide an update for a better understanding of the effects of physical exercise in the modulation of astrocyte function
Evaluation of a Cell-Free Collagen Type I-Based Scaffold for Articular Cartilage Regeneration in an Orthotopic Rat Model.
The management of chondral defects represents a big challenge because of the limited self-healing capacity of cartilage. Many approaches in this field obtained partial satisfactory results. Cartilage tissue engineering, combining innovative scaffolds and stem cells from different sources, emerges as a promising strategy for cartilage regeneration. The aim of this study was to evaluate the capability of a cell-free collagen I-based scaffold to promote cartilaginous repair after orthotopic implantation in vivo. Articular cartilage lesions (ACL) were created at the femoropatellar groove in rat knees and cell free collagen I-based scaffolds (S) were then implanted into right knee defect for the ACL-S group. No scaffold was implanted for the ACL group. At 4-, 8- and 16-weeks post-transplantation, degrees of cartilage repair were evaluated by morphological, histochemical and gene expression analyses. Histological analysis shows the formation of fibrous tissue, at 4-weeks replaced by a tissue resembling the calcified one at 16-weeks in the ACL group. In the ACL-S group, progressive replacement of the scaffold with the newly formed cartilage-like tissue is shown, as confirmed by Alcian Blue staining. Immunohistochemical and quantitative real-time PCR (qRT-PCR) analyses display the expression of typical cartilage markers, such as collagen type I and II (ColI and ColII), Aggrecan and Sox9. The results of this study display that the collagen I-based scaffold is highly biocompatible and able to recruit host cells from the surrounding joint tissues to promote cartilaginous repair of articular defects, suggesting its use as a potential approach for cartilage tissue regeneration
Current knowledge of pituitary adenylate cyclase activating polypeptide (PACAP) in articular cartilage
Pituitary adenylate cyclase activating polypeptide (PACAP) is an evolutionally well conserved neuropeptide, mainly expressed by neuronal and peripheral cells. It proves to be an interesting object of study both for its trophic functions during the development of several tissues and for its protective effects against oxidative stress, hypoxia, inflammation and apoptosis in different degenerative diseases. This brief review summarises the recent findings concerning the role of PACAP in the articular cartilage. PACAP and its receptors are expressed during chondrogenesis and are shown to activate the pathways involved in regulating cartilage development. Moreover, this neuropeptide proves to be chondroprotective against those stressors that determine cartilage degeneration and contribute to the onset of osteoarthritis (OA), the most common form of degenerative joint disease. Indeed, the degenerated cartilage exhibits low levels of PACAP, suggesting that its endogenous levels in adult cartilage may play an essential role in maintaining physiological properties. Thanks to its peculiar characteristics, exogenous administration of PACAP could be suggested as a potential tool to slow down the progression of OA and for cartilage regeneration approaches
Seasonal and spatial variability in condition of age-0+ Argentine hake Merluccius hubbsi Marini, 1933, in the San Jorge Gulf (Argentina): A bottom-up perspective
In the north Patagonian region of the Argentinean Continental Shelf, the San Jorge Gulf (SJG; 45°‐47°S, 65°30ʹ‐67°30ʹW) is the main nursery ground of age‐0+ Argentine hake Merluccius hubbsi Marini, 1933, one of the most important fishery resources in Argentina. The gulf exhibits strong seasonal and spatial fluctuations in environmental features, which might affect survival of age‐0+ individuals and recruitment to the adult population. Our main goal was to evaluate the seasonal and spatial dynamics of their nutritional status within the SJG in winter 2016, spring 2016 and summer 2017. Condition indices (relative condition factor Kn, hepatosomatic index HSI and liver lipid content %L) and diet information (feeding incidence and relative importance of prey) were combined with physical (temperature and salinity) and biological (satellite chlorophyll‐a concentration; chl‐a) data. Age‐0+ condition indices and prey intake showed significant seasonal variations, with minimum values in winter, intermediate in summer and maximum in spring, strongly coupled to the mean chl‐a concentration in each season. Herbivorous euphausiids Euphausia spp. were the preferred prey along the study period. A bottom‐up effect on condition of age‐0+ hake is suggested, manifested as lower condition values in winter, the less productive season. Spatially, better conditioned individuals matched sectors of the gulf where chl‐a concentrations were higher, coupled to the presence of frontal systems. Monitoring age‐0+ hake nutritional status is relevant in the current global change scenario, which might modify phytoplankton biomass and composition and, consequently, the herbivorous zooplankton abundances.Fil: Temperoni, Brenda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Subsede Instituto Nacional de Investigación y Desarrollo Pesquero; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: Massa, Agueda Elena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Subsede Instituto Nacional de Investigación y Desarrollo Pesquero; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: Martos, Patricia. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias Marinas; ArgentinaFil: Marrari, Marina. Ministerio de Defensa. Armada Argentina. Servicio de Hidrografía Naval. Departamento Oceanografía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
HIV-1 Tat and AIDS-associated cancer: targeting the cellular anti-cancer barrier?
The acquired immunodeficiency syndrome (AIDS) is accompanied by a significant increase in the incidence of neoplasms. Several causative agents have been proposed for this phenomenon. These include immunodeficiency and oncogenic DNA viruses and the HIV-1 protein Tat. Cancer in general is closely linked to genomic instability and DNA repair mechanisms. The latter maintains genomic stability and serves as a cellular anti-cancer barrier. Defects in DNA repair pathway are associated with carcinogenesis
- …