4,123 research outputs found

    Direct neutron capture cross sections of 62Ni in the s-process energy range

    Get PDF
    Direct neutron capture on 62Ni is calculated in the DWBA and the cross sections in the energy range relevant for s-process nucleosynthesis are given. It is confirmed that the thermal value of the capture cross section contains a subthreshold resonance contribution. Contrary to previous investigations it is found that the capture at higher energies is dominated by p-waves, thus leading to a considerably increased cross section at s-process energies and a modified energy dependence.Comment: 10 pages, 1 figure, corrected typos in Eq. 6 and subsequent paragrap

    Reaction Rates and Nuclear Properties Relevant for Nucleosynthesis in Massive Stars and Far From Stability

    Full text link
    Explosive nuclear burning in astrophysical environments produces unstable nuclei which again can be targets for subsequent reactions. In addition, it involves a large number of stable nuclides which are not fully explored by experiments, yet. Thus, it is necessary to be able to predict reaction cross sections and thermonuclear rates with the aid of theoretical models. Such predictions are also of interest for investigations at radioactive ion beam facilities. An extended library of theoretical cross sections and reaction rates is presented. The problem of alpha+nucleus potentials is addressed and new parametrizations presented. The problem of properly predicting cross sections at low level densities is illustrated by the 62Ni(n,gamma) reaction.Comment: 7 pages, invited talk, to appear in proceedings of CGS11 (Prague), World Scientific (new version: fixed typo in potential parameters; note: they will still be incorrect in the printed version

    Alpha Clustering and the stellar nucleosynthesis of carbon

    Get PDF
    The astrophysical S--factor and reaction rates for the triple--alpha process are calculated in the direct--capture model. It is shown that the stellar carbon production is extremely sensitive to small variations in the N--N interaction.Comment: 2 pages LaTe

    Observing Nucleon Decay in Lead Perchlorate

    Get PDF
    Lead perchlorate, part of the OMNIS supernova neutrino detector, contains two nuclei, 208Pb and 35Cl, that might be used to study nucleon decay. Both would produce signatures that will make them especially useful for studying less-well-studied neutron decay modes, e.g., those in which only neutrinos are emitted.Comment: 6 pages, 2 figure

    The Path to Improved Reaction Rates for Astrophysics

    Get PDF
    This review focuses on nuclear reactions in astrophysics and, more specifically, on reactions with light ions (nucleons and alpha particles) proceeding via the strong interaction. It is intended to present the basic definitions essential for studies in nuclear astrophysics, to point out the differences between nuclear reactions taking place in stars and in a terrestrial laboratory, and to illustrate some of the challenges to be faced in theoretical and experimental studies of those reactions. The discussion revolves around the relevant quantities for astrophysics, which are the astrophysical reaction rates. The sensitivity of the reaction rates to the uncertainties in the prediction of various nuclear properties is explored and some guidelines for experimentalists are also provided.Comment: 100 pages, 33 figures, 1 table; accepted for publication in Int. J. Mod. Phys. E (scheduled for February 2011 issue); the formatting here differs in that it includes a table of contents and numbered paragraphs 5.4.2.1-5.4.2.10; v2: updated references; v3: typos fixed; v4: final typo fix, content similar to published version

    Uncertainties In Direct Neutron Capture Calculations Due To Nuclear Structure Models

    Get PDF
    The prediction of cross sections for nuclei far off stability is crucial in the field of nuclear astrophysics. For spherical nuclei close to the dripline the statistical model (Hauser-Feshbach) approach is not applicable and direct contributions may dominate the cross sections. For neutron-rich, even-even Sn targets, we compare the resulting neutron capture cross sections when consistently taking the input for the direct capture calculations from three different microscopic models. The results underline the sensitivity of cross sections calculated in the direct model to nuclear structure models which can lead to high uncertainties when lacking experimental information.Comment: 4 pages, using espcrc1.sty, Proc. Intl. Conf. "Nuclei in the Cosmos IV", Univ. Notre Dame 1996, Nucl. Phys. A, in press. A postscript version can also be obtained from http://quasar.physik.unibas.ch/research.htm

    The Influence of Reaction Rates on the Final p-Abundances

    Full text link
    The astrophysical p-process is responsible for the origin of the proton rich nuclei,which are heavier than iron. A huge network involving thousands of reaction rates is necessary to calculate the final p-abundances. But not all rates included in the network have a strong influence on the p-nuclei abundances. The p-process was investigated using a full nuclear reaction network for a type II supernovae explosion when the shock front passes through the O/Ne layer. Calculations were done with a multi-layer model adopting the seed of a pre-explosion evolution of a 25 mass star. In extensive simulations we investigated the impact of single reaction rates on the final p-abundances. The results are important for the strategy of future experiments in this field.Comment: 4 page
    • …
    corecore