206 research outputs found

    Large-Scale Structure at z~2.5

    Full text link
    We have made a statistically complete, unbiased survey of C IV systems toward a region of high QSO density near the South Galactic Pole using 25 lines of sight spanning 1.5<z<2.81.5<z<2.8. Such a survey makes an excellent probe of large-scale structure at early epochs. We find evidence for structure on the 1535h115-35h^{-1} proper Mpc scale (H0100H_0 \equiv 100 km s1s^{-1} Mpc1{-1}) as determined by the two point C IV - C IV absorber correlation function, and reject the null hypothesis that C IV systems are distributed randomly on such scales at the 3.5σ\sim 3.5\sigma level. The structure likely reflects the distance between two groups of absorbers subtending  13×5×21h3\sim~ 13 \times 5 \times 21h^{-3} and 7×1×15h3\sim 7 \times 1 \times 15h^{-3} Mpc3^3 at z2.3z\sim 2.3 and z2.5z \sim 2.5 respectively. There is also a marginal trend for the association of high rest equivalent width C IV absorbers and QSOs at similar redshifts but along different lines of sight. The total number of C IV systems detected is consistent with that which would be expected based on a survey using many widely separated lines of sight. Using the same data, we also find 11 Mg II absorbers in a complete survey toward 24 lines of sight; there is no evidence for Mg II - Mg II or Mg II - QSO clustering, though the sample size is likely still small to detect such structure if it exists.Comment: 56 pages including 32 of figures, in gzip-ed uuencoded postscript format, 1 long table not included, aastex4 package. Accepted for publication in ApJ Supplement

    Analytical time-like geodesics

    Full text link
    Time-like orbits in Schwarzschild space-time are presented and classified in a very transparent and straightforward way into four types. The analytical solutions to orbit, time, and proper time equations are given for all orbit types in the form r=r(\lambda), t=t(\chi), and \tau=\tau(\chi), where \lambda\ is the true anomaly and \chi\ is a parameter along the orbit. A very simple relation between \lambda\ and \chi\ is also shown. These solutions are very useful for modeling temporal evolution of transient phenomena near black holes since they are expressed with Jacobi elliptic functions and elliptic integrals, which can be calculated very efficiently and accurately.Comment: 15 pages, 10 figures, accepted by General Relativity and Gravitatio

    Novel characterization techniques for cultural heritage using a TEM orientation imaging in combination with 3D precession diffraction tomography: a case study of green and white ancient Roman glass tesserae

    Get PDF
    We present new transmission electron microscopy (TEM) based electron diffraction characterization techniques (orientation imaging combined with 3D precession electron diffraction tomography-ADT) applied on cultural heritage materials. We have determined precisely unit cell parameters, crystal symmetry, atomic structure, and orientation/phase mapping of various pigment/opacifier crystallites at nm scale which are present in green and white Roman glass tesserae. Such TEM techniques can be an alternative to Synchrotron based techniques, and allow to distinguish accurately at nm scale between different crystal structures even in cases of same/very close chemical composition, where is also possible to visualize between different crystal orientations and amorphous/crystalline phases. This study additionally demonstrates that although opacifiers in green and white tesserae are found to have average Pb2Sb2O7 cubic and CaSb2O6 trigonal structures, their pyrochlore related framework can host many other elements like Cu, Ca, Fe through ionic exchanges at high firing temperatures which in turn may also contribute to the tesserae colour appearance

    Extramedullary Hematopoiesis Generates Ly-6C(high) Monocytes That Infiltrate Atherosclerotic Lesions

    Get PDF
    BACKGROUND: Atherosclerotic lesions are believed to grow via the recruitment of bone marrow-derived monocytes. Among the known murine monocyte subsets, Ly-6C(high) monocytes are inflammatory, accumulate in lesions preferentially, and differentiate. Here we hypothesized that the bone marrow outsources the production of Ly-6C(high) monocytes during atherosclerosis. METHODS AND RESULTS: Using murine models of atherosclerosis and fate-mapping approaches, we show that hematopoietic stem and progenitor cells (HSPC) progressively relocate from the bone marrow to the splenic red pulp where they encounter GM-CSF and IL-3, clonally expand, and differentiate to Ly-6C(high) monocytes. Monocytes born in such extramedullary niches intravasate, circulate, and accumulate abundantly in atheromata. Upon lesional infiltration, Ly-6C(high) monocytes secrete inflammatory cytokines, reactive oxygen species, and proteases. Eventually, they ingest lipids and become foam cells. CONCLUSIONS: Our findings indicate that extramedullary sites supplement the bone marrow’s hematopoietic function by producing circulating inflammatory cells that infiltrate atherosclerotic lesions

    Quantum Theory in Accelerated Frames of Reference

    Get PDF
    The observational basis of quantum theory in accelerated systems is studied. The extension of Lorentz invariance to accelerated systems via the hypothesis of locality is discussed and the limitations of this hypothesis are pointed out. The nonlocal theory of accelerated observers is briefly described. Moreover, the main observational aspects of Dirac's equation in noninertial frames of reference are presented. The Galilean invariance of nonrelativistic quantum mechanics and the mass superselection rule are examined in the light of the invariance of physical laws under inhomogeneous Lorentz transformations.Comment: 25 pages, no figures, contribution to Springer Lecture Notes in Physics (Proc. SR 2005, Potsdam, Germany, February 13 - 18, 2005

    Entanglement, Bell Inequalities and Decoherence in Particle Physics

    Full text link
    We demonstrate the relevance of entanglement, Bell inequalities and decoherence in particle physics. In particular, we study in detail the features of the ``strange'' K0Kˉ0K^0 \bar K^0 system as an example of entangled meson--antimeson systems. The analogies and differences to entangled spin--1/2 or photon systems are worked, the effects of a unitary time evolution of the meson system is demonstrated explicitly. After an introduction we present several types of Bell inequalities and show a remarkable connection to CP violation. We investigate the stability of entangled quantum systems pursuing the question how possible decoherence might arise due to the interaction of the system with its ``environment''. The decoherence is strikingly connected to the entanglement loss of common entanglement measures. Finally, some outlook of the field is presented.Comment: Lectures given at Quantum Coherence in Matter: from Quarks to Solids, 42. Internationale Universit\"atswochen f\"ur Theoretische Physik, Schladming, Austria, Feb. 28 -- March 6, 2004, submitted to Lecture Notes in Physics, Springer Verlag, 45 page

    PhenoScore quantifies phenotypic variation for rare genetic diseases by combining facial analysis with other clinical features using a machine-learning framework

    Get PDF
    Several molecular and phenotypic algorithms exist that establish genotype-phenotype correlations, including facial recognition tools. However, no unified framework that investigates both facial data and other phenotypic data directly from individuals exists. We developed PhenoScore: an open-source, artificial intelligence-based phenomics framework, combining facial recognition technology with Human Phenotype Ontology data analysis to quantify phenotypic similarity. Here we show PhenoScore's ability to recognize distinct phenotypic entities by establishing recognizable phenotypes for 37 of 40 investigated syndromes against clinical features observed in individuals with other neurodevelopmental disorders and show it is an improvement on existing approaches. PhenoScore provides predictions for individuals with variants of unknown significance and enables sophisticated genotype-phenotype studies by testing hypotheses on possible phenotypic (sub)groups. PhenoScore confirmed previously known phenotypic subgroups caused by variants in the same gene for SATB1, SETBP1 and DEAF1 and provides objective clinical evidence for two distinct ADNP-related phenotypes, already established functionally.PhenoScore is an open-source machine-learning tool that combines facial image recognition with Human Phenotype Ontology for genetic syndrome identification without genomic data, with applications to subgroup analysis and variants of unknown significance classification.Genetics of disease, diagnosis and treatmen

    Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector

    Get PDF
    The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements

    A search for resonances decaying into a Higgs boson and a new particle X in the XH → qqbb final state with the ATLAS detector

    Get PDF
    A search for heavy resonances decaying into a Higgs boson (H) and a new particle (X) is reported, utilizing 36.1 fb−1 of proton–proton collision data at collected during 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. The particle X is assumed to decay to a pair of light quarks, and the fully hadronic final state is analysed. The search considers the regime of high XH resonance masses, where the X and H bosons are both highly Lorentz-boosted and are each reconstructed using a single jet with large radius parameter. A two-dimensional phase space of XH mass versus X mass is scanned for evidence of a signal, over a range of XH resonance mass values between 1 TeV and 4 TeV, and for X particles with masses from 50 GeV to 1000 GeV. All search results are consistent with the expectations for the background due to Standard Model processes, and 95% CL upper limits are set, as a function of XH and X masses, on the production cross-section of the resonance
    corecore