22 research outputs found

    Susceptibility measurements on the superconducting properties of Nb-Ge alloys

    Get PDF
    A susceptibility apparatus to measure superconducting properties of samples made in the MSFC Drop Tube was used to measure the transition temperature (Tc) and susceptibilities of Nb and Nb Ge Alloys prepared in bulk spherical (2-4 mm diameter) form using a 32 m drop tube in which containerless low gravity solidification could take place. Results indicate that a drop tube processing environment was beneficial for increasing the Tc of the superconducting phase of the material over that of arc melted material. The increase in Tc is found to be related to the amount of solidification of the total sample that took place before reaching the bottom of the drop tube. In phase and quadrature phase measurements of the specimen's susceptibility indicated that some improvement in homogeneity takes place in drop tube processing. These phase measurements also indicated little or no shielding of a lower Tc phase by a higher Tc filamentary structure

    Tolerance requirements to prevent fluid leakage in the crucible/plunger MEA experiment MPS 770030

    Get PDF
    Molten Al-In leaked unexpectedly out of the crucible of a proposed MEA materials processing in space experiment. The molten metals use a spring loaded plunger to eliminate most free surfaces. The critical criteria necessary to initiate flow and the rate of fluid flow into the crucible/plunger annulus is calculated. Experimental in situ X-radiographs are interpreted according to the calculations. A note on possible effects of capillary flow if wetting occurs between crucible/plunger and liquids is included

    Method and apparatus for supercooling and solidifying substances

    Get PDF
    An enclosure provides a containerless environment in which a sample specimen is positioned. The specimen is heated in the containerless environment, and the specimen melt is dropped through the tube in which it cools by radiation. The tube is alternatively backfilled with an inert gas whereby the specimen melt cools by both radiation and convection during its free fall. During the free fall, the sample is in a containerless, low-gravity environment which enhances supercooling in the sample and prevents sedimentation and thermal convection influences. The sample continues to supercool until nucleation occurs which is detected by silicon photovoltaic detectors. The sample solidifies after nucleation and becomes completely solid before entering the detachable catcher. The amount of supercooling of the specimen can be measured by knowing the cooling ratio and determining the time for nucleation to occur

    Vitrification and determination of the crystallization time scales of the bulk-metallic-glass-forming liquid Zr58.5Nb2.8Cu15.6Ni12.8Al10.3

    Get PDF
    The crystallization kinetics of Zr58.5Nb2.8Cu15.6Ni12.8Al10.3 were studied in an electrostatic levitation (ESL) apparatus. The measured critical cooling rate is 1.75 K/s. Zr58.5Nb2.8Cu15.6Ni12.8Al10.3 is the first bulk-metallic-glass-forming liquid that does not contain beryllium to be vitrified by purely radiative cooling in the ESL. Furthermore, the sluggish crystallization kinetics enable the determination of the time-temperature-transformation (TTT) diagram between the liquidus and the glass transition temperatures. The shortest time to reach crystallization in an isothermal experiment; i.e., the nose of the TTT diagram is 32 s. The nose of the TTT diagram is at 900 K and positioned about 200 K below the liquidus temperature

    Containerless, Low-Gravity Undercooling of Ti-Ce Alloys in the MSFC Drop Tube

    Get PDF
    Previous tests of the classical nucleation theory as applied to liquid-liquid gap miscibility systems found a discrepancy between experiment and theory in the ability to undercool one of the liquids before the L1-L2 separation occurs. To model the initial separation process in a two-phase liquid mixture, different theoretical approaches, such as free-energy gradient and density gradient theories, have been put forth. If there is a large enough interaction between the critical liquid and the crucible, both models predict a wetting temperature (T(sub w)) above which the minority liquid perfectly wets and layers the crucible interface, but only on one side of the immiscibility dome. Materials with compositions on the other side of the dome will have simple surface adsorption by the minority liquid before bulk separation occurs when the coexistence (i.e., binoidal) line in reached. If the interaction between the critical liquid and the crucible were to decrease, T(sub w) would increase, eventually approaching the critical consolute temperature (T(sub cc)). If this situation occurs, then there could be large regions of the miscibility gap where non-perfect wetting conditions prevail resulting in droplets of L1 liquid at the surface having a non-zero contact angle. The resulting bulk structure will then depend on what happens on the surface and the subsequent processing conditions. In the past several decades, many experiments in space have been performed on liquid metal binary immiscible systems for the purpose of determining the effects that different crucibles may have on the wetting and separation process of the liquids. Potard performed experiments that showed different crucible materials could cause the majority phase to preferentially wet the container and thus produce a dispersed microstructure of the minority phase. Several other studies have been performed on immiscibles in a semi-container environment using an emulsion technique. Only one previous study was performed using completely containerless processing of immiscible metals and the results of that investigation are similar to some of the emulsion studies. In all the studies, surface wetting was attributed as the cause for the similar microstructures or the asymmetry in the ability to undercool the liquid below the binoidal on one side of the immiscibility dome. By removing the container completely from the separation process, it was proposed that the loss of the crucible/liquid interaction would produce a large shift in T(sub w) and thus change the wetting characteristics at the surface. By investigating various compositions across the miscibility gap, a change in the type and amount of liquid wetting at the surface of a containerless droplet should change the surface nucleating behavior of the droplet - whether it be the liquid-liquid wetting or the liquid-to-solid transition. Undercooling of the liquid into the metastable region should produce significant differences in the separation process and the microstructure upon solidification. In this study, we attempt to measure these transitions by monitoring the temperature of the sample by optical pyrometry. Microstructural analysis will be made to correlate with the degree of undercooling and the separation mechanisms involved

    Studies of Nucleation, Growth, Specific Heat, and Viscosity of Undercooled Melts of Quasicrystals and Polytetrahedral-Phase-Forming Alloys

    No full text
    Undercooling experiments and thermal physical property measurements of metallic alloys on the International Space Station (ISS) are planned. This recently-funded research focuses on fundamental issues of the formation and structure of highly-ordered non-crystallographic phases (quasicrystals) and related crystal phases (crystal approximants), and the connections between the atomic structures of these phases and those of liquids and glasses. It extends studies made previously by us of the composition dependence of crystal nucleation processes in silicate and metallic glasses, to the case of nucleation from the liquid phase. Motivating results from rf-levitation and drop-tube measurements of the undercooling of Ti/Zr-based liquids that form quasicrystals and crystal approximants are discussed. Preliminary measurements by electrostatic levitation (ESL) are presented
    corecore