89 research outputs found
Sympathetic-transduction in untreated hypertension
Transduction of muscle sympathetic nerve activity (MSNA) into vascular tone varies with age and sex. Older normotensive men have reduced sympathetic transduction so that a given level of MSNA causes less arteriole vasoconstriction. Whether sympathetic transduction is altered in hypertension (HTN) is not known. We investigated whether sympathetic transduction is impaired in untreated hypertensive men compared to normotensive controls. Eight untreated hypertensive men and 10 normotensive men (age 50 ± 15 years vs. 45 ± 12 years (mean ± SD); p = 0.19, body mass index (BMI) 24.7 ± 2.7 kg/m(2) vs. 26.0 ± 4.2 kg/m(2); p = 0.21) were recruited. MSNA was recorded from the peroneal nerve using microneurography; beat-to-beat blood pressure (BP; Finapres) and heart rate (ECG) were recorded simultaneously at rest for 10 min. Sympathetic-transduction was quantified using a previously described method. The relationship between MSNA burst area and subsequent diastolic BP was measured for each participant with the slope of the regression indicating sympathetic transduction. MSNA was higher in the hypertensive group compared to normotensives (73 ± 17 bursts/100 heartbeats vs. 49 ± 19 bursts/100 heart bursts; p = 0.007). Sympathetic-transduction was lower in the hypertensive versus normotensive group (0.04%/mmHg/s vs. 0.11%/mmHg/s, respectively; R = 0.622; p = 0.006). In summary, hypertensive men had lower sympathetic transduction compared to normotensive individuals suggesting that higher levels of MSNA are needed to cause the same level of vasoconstrictor tone
Is High Blood Pressure Self-Protection for the Brain?
Rationale: Data from animal models of hypertension indicate that high blood pressure may develop as a vital mechanism to maintain adequate blood flow to the brain. We propose that congenital vascular abnormalities of the posterior cerebral circulation and cerebral hypoperfusion could partially explain the etiology of essential hypertension, which remains enigmatic in 95% of patients. Objective: To evaluate the role of the cerebral circulation in the pathophysiology of hypertension. Methods and Results: We completed a series of retrospective and mechanistic case-control magnetic resonance imaging and physiological studies, in normotensive and hypertensive humans (n=259). Interestingly, in humans with hypertension, we report a higher prevalence of congenital cerebrovascular variants; vertebral artery hypoplasia and an incomplete posterior circle of Willis, which were coupled with increased cerebral vascular resistance, reduced cerebral blood flow and a higher incidence of lacunar type infarcts. Causally, cerebral vascular resistance was elevated before the onset of hypertension and elevated sympathetic nerve activity (n=126). Interestingly, untreated hypertensive patients (n=20) had a cerebral blood flow similar to age-matched controls (n=28). However, participants receiving anti-hypertensive therapy (with blood pressure controlled below target levels) had reduced cerebral perfusion (n=19). Finally, elevated cerebral vascular resistance was a predictor of hypertension suggesting it may be a novel prognostic and/or diagnostic marker (n=126). < Conclusions: Our data indicate that congenital cerebrovascular variants in the posterior circulation and the associated cerebral hypoperfusion may be a factor in triggering hypertension. Therefore lowering blood pressure may worsen cerebral perfusion in susceptible individuals
Neuronal DNA damage response-associated dysregulation of signalling pathways and cholesterol metabolism at the earliest stages of Alzheimer-type pathology.
AIMS: Oxidative damage and an associated DNA damage response (DDR) are evident in mild cognitive impairment and early Alzheimer's disease, suggesting that neuronal dysfunction resulting from oxidative DNA damage may account for some of the cognitive impairment not fully explained by Alzheimer-type pathology. METHODS: Frontal cortex (Braak stage 0-II) was obtained from the Medical Research Council's Cognitive Function and Ageing Study cohort. Neurones were isolated from eight cases (four high and four low DDR) by laser capture microdissection and changes in the transcriptome identified by microarray analysis. RESULTS: Two thousand three hundred seventy-eight genes were significantly differentially expressed (1690 up-regulated, 688 down-regulated, P < 0.001) in cases with a high neuronal DDR. Functional grouping identified dysregulation of cholesterol biosynthesis, insulin and Wnt signalling, and up-regulation of glycogen synthase kinase 3β. Candidate genes were validated by quantitative real-time polymerase chain reaction. Cerebrospinal fluid levels of 24(S)-hydroxycholesterol associated with neuronal DDR across all Braak stages (rs  = 0.30, P = 0.03). CONCLUSIONS: A persistent neuronal DDR may result in increased cholesterol biosynthesis, impaired insulin and Wnt signalling, and increased GSK3β, thereby contributing to neuronal dysfunction independent of Alzheimer-type pathology in the ageing brain
- …