86 research outputs found
Plant growth enhancement by elevated CO2 eliminated by joint water and nitrogen limitation
http://www.nature.com/ngeo/Rising atmospheric CO2 concentrations can fertilize plant growth. The resulting increased plant uptake of CO2 could, in turn,
slow increases in atmospheric CO2 levels and associated climate warming. CO2 fertilization e ects may be enhanced when
water availability is low, because elevated CO2 also leads to improved plant water-use e ciency. However, CO2 fertilization
e ects may be weaker when plant growth is limited by nutrient availability. How variation in soil nutrients and water may act
together to influence CO2 fertilization is unresolved. Here we report plant biomass levels from a five-year, open-air experiment
in a perennial grassland under two contrasting levels of atmospheric CO2, soil nitrogen and summer rainfall, respectively.
We find that the presence of a CO2 fertilization e ect depends on the amount of available nitrogen and water. Specifically,
elevated CO2 levels led to an increase in plant biomass of more than 33% when summer rainfall, nitrogen supply, or both were
at the higher levels (ambient for rainfall and elevated for soil nitrogen). But elevated CO2 concentrations did not increase plant
biomass when both rainfall and nitrogen were at their lower level. We conclude that given widespread, simultaneous limitation
by water and nutrients, large stimulation of biomass by rising atmospheric CO2 concentrations may not be ubiquitous
Nitrogen limitation constrains sustainability of ecosystem response to CO2
Enhanced plant biomass accumulation in response to elevated atmospheric CO2 concentration could dampen the future rate of increase in CO2 levels and associated climate warming. However, it is unknown whether CO2-induced stimulation of plant growth and biomass accumulation will be sustained or whether limited nitrogen (N) availability constrains greater plant growth in a CO2-enriched world(1-9). Here we show, after a six-year field study of perennial grassland species grown under ambient and elevated levels of CO2 and N, that low availability of N progressively suppresses the positive response of plant biomass to elevated CO2. Initially, the stimulation of total plant biomass by elevated CO2 was no greater at enriched than at ambient N supply. After four to six years, however, elevated CO2 stimulated plant biomass much less under ambient than enriched N supply. This response was consistent with the temporally divergent effects of elevated CO2 on soil and plant N dynamics at differing levels of N supply. Our results indicate that variability in availability of soil N and deposition of atmospheric N are both likely to influence the response of plant biomass accumulation to elevated atmospheric CO2. Given that limitations to productivity resulting from the insufficient availability of N are widespread in both unmanaged and managed vegetation(5,7-9), soil N supply is probably an important constraint on global terrestrial responses to elevated CO2.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62769/1/nature04486.pd
Recommended from our members
Probabilistic downscaling of remote sensing data with applications for multi-scale biogeochemical flux modeling
Upscaling ecological information to larger scales in space and downscaling remote sensing observations or model simulations to finer scales remain grand challenges in Earth system science. Downscaling often involves inferring subgrid information from coarse-scale data, and such ill-posed problems are classically addressed using regularization. Here, we apply two-dimensional Tikhonov Regularization (2DTR) to simulate subgrid surface patterns for ecological applications. Specifically, we test the ability of 2DTR to simulate the spatial statistics of high-resolution (4 m) remote sensing observations of the normalized difference vegetation index (NDVI) in a tundra landscape. We find that the 2DTR approach as applied here can capture the major mode of spatial variability of the high-resolution information, but not multiple modes of spatial variability, and that the Lagrange multiplier (γ) used to impose the condition of smoothness across space is related to the range of the experimental semivariogram. We used observed and 2DTR-simulated maps of NDVI to estimate landscape-level leaf area index (LAI) and gross primary productivity (GPP). NDVI maps simulated using a γ value that approximates the range of observed NDVI result in a landscape-level GPP estimate that differs by ca 2% from those created using observed NDVI. Following findings that GPP per unit LAI is lower near vegetation patch edges, we simulated vegetation patch edges using multiple approaches and found that simulated GPP declined by up to 12% as a result. 2DTR can generate random landscapes rapidly and can be applied to disaggregate ecological information and compare of spatial observations against simulated landscapes
Phylogenetic Constraints Do Not Explain the Rarity of Nitrogen-Fixing Trees in Late-Successional Temperate Forests
Symbiotic nitrogen (N)-fixing trees are rare in late-successional temperate forests, even though these forests are often N limited. Two hypotheses could explain this paradox. The 'phylogenetic constraints hypothesis' states that no late-successional tree taxa in temperate forests belong to clades that are predisposed to N fixation. Conversely, the 'selective constraints hypothesis' states that such taxa are present, but N-fixing symbioses would lower their fitness. Here we test the phylogenetic constraints hypothesis.Using U.S. forest inventory data, we derived successional indices related to shade tolerance and stand age for N-fixing trees, non-fixing trees in the 'potentially N-fixing clade' (smallest angiosperm clade that includes all N fixers), and non-fixing trees outside this clade. We then used phylogenetically independent contrasts (PICs) to test for associations between these successional indices and N fixation. Four results stand out from our analysis of U.S. trees. First, N fixers are less shade-tolerant than non-fixers both inside and outside of the potentially N-fixing clade. Second, N fixers tend to occur in younger stands in a given geographical region than non-fixers both inside and outside of the potentially N-fixing clade. Third, the potentially N-fixing clade contains numerous late-successional non-fixers. Fourth, although the N fixation trait is evolutionarily conserved, the successional traits are relatively labile.These results suggest that selective constraints, not phylogenetic constraints, explain the rarity of late-successional N-fixing trees in temperate forests. Because N-fixing trees could overcome N limitation to net primary production if they were abundant, this study helps to understand the maintenance of N limitation in temperate forests, and therefore the capacity of this biome to sequester carbon
Using indirect methods to constrain symbiotic nitrogen fixation rates : a case study from an Amazonian rain forest
© The Authors 2009. This article is distributed under the terms of the Creative Commons Attribution Noncommercial License. The definitive version was published in Biogeochemistry 99 (2010): 1-13, doi:10.1007/s10533-009-9392-y.Human activities have profoundly altered the global nitrogen (N) cycle. Increases in anthropogenic N have had multiple effects on the atmosphere, on terrestrial, freshwater and marine ecosystems, and even on human health. Unfortunately, methodological limitations challenge our ability to directly measure natural N inputs via biological N fixation (BNF)—the largest natural source of new N to ecosystems. This confounds efforts to quantify the extent of anthropogenic perturbation to the N cycle. To address this gap, we used a pair of indirect methods—analytical modeling and N balance—to generate independent estimates of BNF in a presumed hotspot of N fixation, a tropical rain forest site in central Rondônia in the Brazilian Amazon Basin. Our objectives were to attempt to constrain symbiotic N fixation rates in this site using indirect methods, and to assess strengths and weaknesses of this approach by looking for areas of convergence and disagreement between the estimates. This approach yielded two remarkably similar estimates of N fixation. However, when compared to a previously published bottom-up estimate, our analysis indicated much lower N inputs via symbiotic BNF in the Rondônia site than has been suggested for the tropics as a whole. This discrepancy may reflect errors associated with extrapolating bottom-up fluxes from plot-scale measures, those resulting from the indirect analyses, and/or the relatively low abundance of legumes at the Rondônia site. While indirect methods have some limitations, we suggest that until the technological challenges of directly measuring N fixation are overcome, integrated approaches that employ a combination of model-generated and empirically-derived data offer a promising way of constraining N inputs via BNF in natural ecosystems.We acknowledge and are grateful for financial support from the Andrew W. Mellon Foundation (C.C. and B.H.), the National Science Foundation (NSF DEB-0515744 to C.C. and A.T. and DEB-0315656 to C.N.), and the NASA LBA Program (NCC5-285 to C.N.)
Modeling complex ecological economic systems: toward an evolutionary, dynamic understanding of people and nature
Recent understanding about system dynamics and predictability that has emerged from the study of complex systems is creating new tools for modeling interactions between anthropogenic and natural systems. A range of techniques has become available through advances in computer speed and accessibility and by implementing a broad, interdisciplinary systems view
Litter quality and its response to water level drawdown in boreal peatlands at plant species and community level
Changes in the structure of plant communities may have much more impact on ecosystem carbon (C) cycling than any phenotypic responses to environmental changes. We studied these impacts via the response of plant litter quality, at the level of species and community, to persistent water-level (WL) drawdown in peatlands. We studied three sites with different nutrient regimes, and water-level manipulations at two time scales. The parameters used to characterize litter quality included extractable substances, cellulose, holocellulose, composition of hemicellulose (neutral sugars, uronic acids), Klason lignin, CuO oxidation phenolic products, and concentrations of C and several nutrients. The litters formed four chemically distinct groups: non-graminoid foliar litters, graminoids, mosses and woody litters. Direct effects of WL drawdown on litter quality at the species level were overruled by indirect effects via changes in litter type composition. The pristine conditions were characterized by Sphagnum moss and graminoid litters. Short-term (years) responses of the litter inputs to WL drawdown were small. In longterm (decades), total litter inputs increased, due to increased tree litter inputs. Simultaneously, the litter type composition and its chemical quality at the community level greatly changed. The changes that we documented will strongly affect soil properties and C cycle of peatlands.Peer reviewe
Nitrate deposition in northern hardwood forests and the nitrogen metabolism of Acer saccharum marsh
It is generally assumed that plant assimilation constitutes the major sink for anthropogenic Nitrate NO 3 − deposited in temperate forests because plant growth is usually limited by nitrogen (N) availability. Nevertheless, plants are known to vary widely in their capacity for NO 3 − uptake and assimilation, and few studies have directly measured these parameters for overstory trees. Using a combination of field and greenhouse experiments, we studied the N nutrition of Acer saccharum Marsh. in four northern hardwood forests receiving experimental NO 3 − additions equivalent to 30 kg N ha −1 year −1 . We measured leaf and fine-root nitrate reductase activity (NRA) of overstory trees using an in vivo assay and used 15 N to determine the kinetic parameters of NO 3 − uptake by excised fine roots. In two greenhouse experiments, we measured leaf and root NRA in A. saccharum seedlings fertilized with 0–3.5 g NO 3 − −N m −2 and determined the kinetic parameters of NO 3 − and NH 4 + uptake in excised roots of seedlings. In both overstory trees and seedlings, rates of leaf and fine root NRA were substantially lower than previously reported rates for most woody plants and showed no response to NO 3 − fertilization (range = non-detectable to 33 nmol NO 2 − g −1 h −1 ). Maximal rates of NO 3 − uptake in overstory trees also were low, ranging from 0.2 to 1.0 μmol g −1 h −1 . In seedlings, the mean V max for NO 3 − uptake in fine roots (1 μmol g −1 h −1 ) was approximately 30 times lower than the V max for NH 4 + uptake (33 μmol g −1 h −1 ). Our results suggest that A. saccharum satisfies its N demand through rapid NH 4 + uptake and may have a limited capacity to serve as a direct sink for atmospheric additions of NO 3 − .Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47695/1/442_2004_Article_BF00334659.pd
Vegetation Leachate During Arctic Thaw Enhances Soil Microbial Phosphorus
Leachate from litter and vegetation penetrates permafrost surface soils during thaw before being exported to aquatic systems. We know this leachate is critical to ecosystem function downstream and hypothesized that thaw leachate inputs would also drive terrestrial microbial activity and nutrient uptake. However, we recognized two potential endpoint scenarios: vegetation leachate is an important source of C for microbes in thawing soil; or vegetation leachate is irrelevant next to the large background C, N, and P pools in thaw soil solution. We assessed these potential outcomes by making vegetation leachate from frozen vegetation and litter in four Arctic ecosystems that have a variety of litter quality and soil C, N, and P contents; one of these ecosystems included a disturbance recovery chronosequence that allowed us to test our second hypothesis that thaw leachate response would be enhanced in disturbed ecosystems. We added water or vegetation leachate to intact, frozen, winter soil cores and incubated the cores through thaw. We measured soil respiration throughout, and soil solution and microbial biomass C, N, and P pools and gross N mineralization immediately after a thaw incubation (−10 to 2°C) lasting 6 days. Vegetation leachate varied strongly by ecosystem in C, N, and P quantity and stoichiometry. Regardless, all vegetated ecosystems responded to leachate additions at thaw with an increase in the microbial biomass phosphate flush and an increase in soil solution carbon and nitrogen, implying a selective microbial uptake of phosphate from plant and litter leachate at thaw. This response to leachate additions was absent in recently disturbed, exposed mineral soil but otherwise did not differ between disturbed and undisturbed ecosystems. The selective uptake of P by microbes implies either thaw microbial P limitation or thaw microbial P uptake opportunism, and that spring thaw is an important time for P retention in several Arctic ecosystems
- …