195 research outputs found
Recommended from our members
Potential of novel dextran oligosaccharides as prebiotics for obesity management through in vitro experimentation
The energy-salvaging capacity of the gut microbiota from dietary ingredients has been proposed as a contributing factor for the development of obesity. This knowledge generated interest in the use of non-digestible dietary ingredients such as prebiotics to manipulate host energy homeostasis. In the present study, the in vitro response of obese human faecal microbiota to novel oligosaccharides was investigated. Dextrans of various molecular weights and degrees of branching were fermented with the faecal microbiota of healthy obese adults in pH-controlled batch cultures. Changes in bacterial populations were monitored using fluorescent in situ hybridisation and SCFA concentrations were analysed by HPLC. The rate of gas production and total volume of gas produced were also determined. In general, the novel dextrans and inulin increased the counts of bifidobacteria. Some of the dextrans were able to alter the composition of the obese human microbiota by increasing the counts of Bacteroides–Prevotella and decreasing those of Faecalibacterium prausnitzii and Ruminococcus bromii/R. flavefaciens. Considerable increases in SCFA concentrations were observed in response to all substrates. Gas production rates were similar during the fermentation of all dextrans, but significantly lower than those during the fermentation of inulin. Lower total gas production and shorter time to attain maximal gas production were observed during the fermentation of the linear 1 kDa dextran than during the fermentation of the other dextrans. The efficacy of bifidobacteria to ferment dextrans relied on the molecular weight and not on the degree of branching. In conclusion, there are no differences in the profiles between the obese and lean human faecal fermentations of dextrans
Recommended from our members
Metabolism of wheat dextrin, partially hydrolysed guar gum and insulin combined with either Bifidobacterium lactis or Lactobacillus acidophilus in an in vitro gut model fermentation
Combining the fibres wheat dextrin (WD), partially hydrolysed guar gum (PHGG) and inulin with probiotics Lactobacillus acidophilus NCFM (NCFM) or Bifidobacterium lactis HN019 (HN019) may enhance bacterial metabolites leading to a healthier gut community. The aim of this study was to determine whether WD, PHGG and inulin or NCFM and HN019 alone generate a more favourable gut bacterial community than when combined. A secondary aim was to assess organic acid production following prebiotics, probiotics and synbiotic fermentation. An in vitro gut model batch culture fermentation was run for 72 h. Samples were collected for bacterial enumeration (fluorescent in situ hybridisation combined with flow cytometry) and organic acid production (gas chromatography). Inulin and HN019 combination significantly increased bifidobacteria compared to inulin alone. Additionally, a significant increase in lactic acid bacteria, Bacteroides and Clostridium coccoides-Eubacterium rectale was found in the inulin containing probiotic vessels. The WD and PHGG vessels combined with the probiotic did not show any alteration in bacterial metabolism compared to the dietary fibres alone. In conclusion, synbiotic inulin combined with either HN019 or NCFM may help to enhance bacterial metabolites and cross-feeding to lead to a prolonged elevation in Bifidobacterium spp., and lactic acid bacteria
Author Correction: Probiotics and prebiotics in intestinal health and disease: from biology to the clinic (Nature Reviews Gastroenterology & Hepatology, (2019), 16, 10, (605-616), 10.1038/s41575-019-0173-3)
© 2019, Springer Nature Limited. In the original article published online, the Competing Interests statement was incorrect and should have stated the following: M.E.S. declares personal fees related to probiotics from the following entities: California Dairy Research Foundation, Clorox, Danone, Danone USA, Dutch Mill, General Mills, JHeimbach, Kelley Drye & Warren, Kellogg, Kerry, Medscape, Nestle, New Chapter, Pepsico, Pfizer, Pharmavite, Probi, Procter & Gamble, Trouw Nutrition, Visalia Dairy Company, Williams Mullen, Winclove Probiotics and Yakult. D.J.M. declares personal fees for consulting for Bayer and Pharmavite. G.R. declares that he helped develop and commercialize probiotic strains GR-1 and RC-14, but has had no financial interest in them for over 10 years. He is Chief Scientific Officer for Seed, a company producing probiotic products. Over the past 3 years, he has consulted on probiotics with Acerus Pharmaceuticals, Altmann, Chr. Hansen, Danone, KGK Science, Kimberly-Clark, Metagenics and Seed. G.R.G. and R.A.R. declare no competing interests. This error has been corrected in the HTML and PDF versions of the article
Recommended from our members
Probiotics and prebiotics in intestinal health and disease: from biology to the clinic
Probiotics and prebiotics are microbiota-management tools for improving host health. They target gastrointestinal effects via the gut, although direct application to other sites such as the oral cavity, vaginal tract and skin is being explored. Here, we describe gut-derived effects in humans. In the past decade, research on the gut microbiome has rapidly accumulated and has been accompanied by increased interest in probiotics and prebiotics as a means to modulate the gut microbiota. Given the importance of these approaches for public health, it is timely to reiterate factual and supporting information on their clinical application and use. In this Review, we discuss scientific evidence on probiotics and prebiotics, including mechanistic insights into health effects. Strains of Lactobacillus, Bifidobacterium and Saccharomyces have a long history of safe and effective use as probiotics, but Roseburia spp., Akkermansia spp., Propionibacterium spp. and Faecalibacterium spp. show promise for the future. For prebiotics, glucans and fructans are well proven, and evidence is building on the prebiotic effects of other substances (for example, oligomers of mannose, glucose, xylose, pectin, starches, human milk and polyphenols)
Recommended from our members
Prebiotic supplementation of In Vitro fecal fermentations inhibits proteolysis by gut bacteria, and host diet shapes gut bacterial metabolism and response to intervention
Metabolism of protein by gut bacteria is potentially detrimental due to the production of toxic metabolites, such as ammonia, amines, p-cresol, and indole. The consumption of prebiotic carbohydrates results in specific changes in the composition and/or activity of the microbiota that may confer benefits to host well-being and health. Here, we have studied the impact of prebiotics on proteolysis within the gut in vitro. Anaerobic stirred batch cultures were inoculated with feces from omnivores (n = 3) and vegetarians (n = 3) and four protein sources (casein, meat, mycoprotein, and soy protein) with and without supplementation by an oligofructose-enriched inulin. Bacterial counts and concentrations of short-chain fatty acids (SCFA), ammonia, phenol, indole, and p-cresol were monitored during fermentation. Addition of the fructan prebiotic Synergy1 increased levels of bifidobacteria (P = 0.000019 and 0.000013 for omnivores and vegetarians, respectively). Branched-chain fatty acids (BCFA) were significantly lower in fermenters with vegetarians’ feces (P = 0.004), reduced further by prebiotic treatment. Ammonia production was lower with Synergy1. Bacterial adaptation to different dietary protein sources was observed through different patterns of ammonia production between vegetarians and omnivores. In volunteer samples with high baseline levels of phenol, indole, p-cresol, and skatole, Synergy1 fermentation led to a reduction of these compounds
The prebiotic effect of α-1,2 branched, low molecular weight dextran in the batch and continuous faecal fermentation system
The aim of this study was to establish the effect of smaller molecular weight (0.5 and 1.0 kDa) on prebiotic efficacy and its putative sustainability in the human gut. The prebiotic effect of α-1,2 branched, 0.5 and 1 kDa dextrans were evaluated in faecal batch fermentations as compared with inulin. Both dextrans induce similar selectivity towards Bifidobacterium sp., Lactobacillus/Enterococcus and Bacteroides/Prevotella, and producing similar concentrations of short chain fatty acids. However, the 0.5 kDa dextran was fermented faster than the 1 kDa dextran, where both produced lower amount of gas than inulin. The fermentation of 1 kDa dextran was further investigated in continuous gut models. The dextran increased Bifidobacterium and Roseburia sp. populations in the final vessel, while decreasing Clostridium histolyticum and Faecalibacterium prausnitzii. Overall, the α-1,2 branched, 1 kDa dextran induced selective effect on the gut microbiota and stimulated short chain fatty acids, indicating prebiotic sustainability in distal regions of the gut
Recommended from our members
Understanding the influence of processing conditions on the extraction of rhamnogalacturonan-I “hairy” pectin from sugar beet pulp
Sugar beet pectin is rich in rhamnogalacturonan-I (RG-I) region, which is a potential source of prebiotics. RG-I
pectin cannot be extracted the same way as commercial homogalacturan-rich pectin using hot acid. Therefore,
this study has explored several alternative methods, including microwave-assisted extraction (MAE) and conventional-
solvent extraction (CSE) at atmospheric pressure using different solvents, and microwave-assisted
hydrothermal extraction (MAHE) under pressure using water. No conclusive differences in microwave and
conventional heating were found with heating rate controlled. The optimum treatment times of both MAE and
CSE at 90 °C atmospheric pressure and regardless of the solvents used were 120 min; however, MAHE at 130 °C
under pressure can dramatically reduce the time to 10 min. Alcohol-insoluble solids (AIS) extracted using pH13
solvent by MAE had both the highest RG-I yield at 25.3% and purity at 260.2 mg/g AIS, followed by AIS extracts
using water by MAHE with 7.5% and 166.7 mg/g AIS respectively
Observational constraints on Rastall's cosmology
Rastall's theory is a modification of General Relativity, based on the
non-conservation of the stress-energy tensor. The latter is encoded in a
parameter such that restores the usual law. We test Rastall's theory in cosmology, on a flat
Robertson-Walker metric, investigating a two-fluid model and using the type Ia
supernovae Constitution dataset. One of the fluids is pressureless and obeys
the usual conservation law, whereas the other is described by an equation of
state , with constant. The Bayesian analysis of the
Constitution set does not strictly constrain the parameter and prefers
values of close to -1. We then address the evolution of small
perturbations and show that they are dramatically unstable if and
, i.e. General Relativity is the favored configuration. The only
alternative is , for which the dynamics becomes independent from
.Comment: Latex file, 14 pages, 6 figures in eps format. Substantial
modifications performed, main conclusions change
Wood-derived dietary fibers promote beneficial human gut microbiota
Woody biomass is a sustainable and virtually unlimited source of hemicellulosic polysaccharides. The predominant hemicelluloses in softwood and hardwood are galactoglucomannan (GGM) and arabinoglucuronoxylan (AGX), respectively. Based on the structure similarity with common dietary fibers, GGM and AGX may be postulated to have prebiotic properties, conferring a health benefit on the host through specific modulation of the gut microbiota. In this study, we evaluated the prebiotic potential of acetylated GGM (AcGGM) and highly acetylated AGX (AcAGX) obtained from Norwegian lignocellulosic feedstocks in vitro. In pure culture, both substrates selectively promoted the growth of Bifidobacterium, Lactobacillus, and Bacteroides species in a manner consistent with the presence of genetic loci for the utilization of β-manno-oligosaccharides/β-mannans and xylo-oligosaccharides/xylans. The prebiotic potential of AcGGM and AcAGX was further assessed in a pH-controlled batch culture fermentation system inoculated with healthy adult human feces. Results were compared with those obtained with a commercial fructo-oligosaccharide (FOS) mixture. Similarly to FOS, both substrates significantly increased (P < 0.05) the Bifidobacterium population. Other bacterial groups enumerated were unaffected with the exception of an increase in the growth of members of the Bacteroides-Prevotella group, Faecalibacterium prausnitzii, and clostridial cluster IX (P < 0.05). Compared to the other substrates, AcGGM promoted butyrogenic fermentation whereas AcAGX was more propiogenic. Although further in vivo confirmation is necessary, these results demonstrate that both AcGGM and AcAGX from lignocellulosic feedstocks can be used to direct the promotion of beneficial bacteria, thus exhibiting a promising prebiotic ability to improve or restore gut health
Quantum-classical transition in Scale Relativity
The theory of scale relativity provides a new insight into the origin of
fundamental laws in physics. Its application to microphysics allows us to
recover quantum mechanics as mechanics on a non-differentiable (fractal)
spacetime. The Schrodinger and Klein-Gordon equations are demonstrated as
geodesic equations in this framework. A development of the intrinsic properties
of this theory, using the mathematical tool of Hamilton's bi-quaternions, leads
us to a derivation of the Dirac equation within the scale-relativity paradigm.
The complex form of the wavefunction in the Schrodinger and Klein-Gordon
equations follows from the non-differentiability of the geometry, since it
involves a breaking of the invariance under the reflection symmetry on the
(proper) time differential element (ds - ds). This mechanism is generalized
for obtaining the bi-quaternionic nature of the Dirac spinor by adding a
further symmetry breaking due to non-differentiability, namely the differential
coordinate reflection symmetry (dx^mu - dx^mu) and by requiring invariance
under parity and time inversion. The Pauli equation is recovered as a
non-relativistic-motion approximation of the Dirac equation.Comment: 28 pages, no figur
- …