33 research outputs found

    Attention Improves During Physical Exercise in Individuals With ADHD

    Get PDF
    The present study examined the effects of physical exercise on attentional processes in individuals diagnosed with Attention Deficit Hyperactivity Disorder (ADHD), compared to healthy controls. Unlike previous studies typically comparing performance on baseline measures with post-exercise performance, this study examined the effects of physical exercise on attention while participants were engaged in a continuous performance task. Fourteen individuals diagnosed with ADHD (71% females, mean age = 24.8) and 17 controls (76% females, mean age = 22.6) completed the Conners Continuous Auditory Test of Attention (CATA). All participants completed the test twice, at baseline in a sitting position and while walking on the treadmill at a speed of 5 km/h. The order of administration was counterbalanced for each group. A 2 × 2 ANOVA with repeated measures detected a group by activity interaction on several measures of the CATA. Specifically, compared to baseline, the ADHD group demonstrated faster reaction times during physical exercise (25.4 ms faster) and decreased omission errors (1.5% better), whereas controls showed the opposite pattern (15.9 ms slower and 0.88% worse, respectively). Importantly, the ADHD group’s overall relatively lower performance on these measures was only evident in the resting condition, attaining scores similar to controls during exercise. These results suggest a possibly hypoactive attentional system in ADHD that could potentially be enhanced by arousal through engagement in physical exercise

    Enhancing Neuroplasticity to Augment Cognitive Remediation in Schizophrenia

    Get PDF
    There is a burgeoning need for innovative treatment strategies to improve the cognitive deficits in schizophrenia. Cognitive remediation (CR) is effective at the group level, but the variability in treatment response is large. Given that CR may depend on intact neuroplasticity to produce cognitive gains, it is reasonable to combine it with strategies that harness patients’ neuroplastic potential. In this review, we discuss two non-pharmacological approaches that can enhance neuroplasticity and possibly augment the effects of CR in schizophrenia: physical exercise and transcranial direct current stimulation (tDCS). Substantial body of evidence supports the beneficial effect of physical exercise on cognition, and a handful of studies in schizophrenia have shown that physical exercise in conjunction with CR has a larger impact on cognition than CR alone. Physical exercise is thought to stimulate neuroplasticity through the regulation of central growth factors, and current evidence points to brain-derived neurotrophic factor as the potential underlying mechanism through which physical exercise might enhance the effectiveness of CR. tDCS has emerged as a potential tool for cognitive enhancement and seems to affect the cellular mechanisms involved in long-term potentiation (LTP). A few reports have demonstrated the feasibility of integrating tDCS with CR in schizophrenia, but there are insufficient data to determine if this multimodal approach leads to incremental performance gain in patients. Larger randomized controlled trials are necessary to understand the mechanisms of the combined tDCS–CR intervention. Future research should take advantage of new developments in neuroplasticity paradigms to examine the effects of these interventions on LTP

    Computerized cognitive training for older diabetic adults at risk of dementia: Study protocol for a randomized controlled trial

    Get PDF
    Introduction Older adults with type 2 diabetes are at high risk of cognitive decline and dementia and form an important target group for dementia risk reduction studies. Despite evidence that computerized cognitive training (CCT) may benefit cognitive performance in cognitively healthy older adults and those with mild cognitive impairment, whether CCT may benefit cognitive performance or improve disease self-management in older diabetic adults has not been studied to date. In addition, whether adaptive difficulty levels and tailoring of interventions to individuals' cognitive profile are superior to generic training remains to be established. Methods Ninety community-dwelling older (age ≥ 65) diabetic adults are recruited and randomized into a tailored and adaptive computerized cognitive training condition or to a generic, nontailored, or adaptive CCT condition. Both groups complete an 8-week training program using the commercially available CogniFit program. The intervention is augmented by a range of behavior-change techniques, and participants in each condition are further randomized into a global or cognition-specific phone-based self-efficacy (SE) condition, or a no-SE condition. The primary outcome is global cognitive performance immediately after the intervention. Secondary outcomes include diabetes self-management, meta-memory, mood, and SE. Discussion This pilot study is the first trial evaluating the potential benefits of home-based tailored and adaptive CCT in relation to cognitive and disease self-management in older diabetic adults. Methodological strengths of this trial include the double-blind design, the clear identification of the proposed active ingredients of the intervention, and the use of evidence-based behavior-change techniques. Results from this study will indicate whether CCT has the potential to lower the risk of diabetes-related cognitive decline. The outcomes of the trial will also advance our understanding of essential intervention parameters required to improve or maintain cognitive function and enhance disease self-management in this at-risk group.This study was conducted with the support of an MHS grant to Michal Schnaider-Beeri (grant no. 25860). The funding source played no role in the design and implementation of the trial, analysis and interpretation of the data, or preparation of the article. The CCT platform was donated by CogniFit. CogniFit or its employees played no role in the design and implementation of the trial, analysis and interpretation of the data, or preparation of the article. Rachel Bloom is supported by the Vice-Chancellor Award awarded to her by Bar Ilan University. Alex Bahar-Fuchs is supported by an Australian National Health and Medical Research Council fellowship (grant no. 1072688)

    Computerized cognitive training for older adults at higher dementia risk due to diabetes: Findings from a randomized controlled trial

    Get PDF
    To evaluate the effects of adaptive and tailored computerized cognitive training on cognition and disease self-management in older adults with diabetesThis work was supported by Maccabi Health Services (MHS; grant no. 25860 to M.S.B.). The funding source played no role in the design and implementation of the trial, analysis and interpretation of the data, or preparation of the manuscript. The CCT platform was donated by CogniFit. CogniFit or its employees played no role in the design and implementation of the trial, analysis and interpretation of the data, or preparation of the manuscript. R.B. was supported by the Vice-Chancellor Award from Bar Ilan University, Israel. A.B-F. was supported by an Australian National Health and Medical Research Council fellowship (grant no. 1072688). M.S.B. was supported by the National Institute on Aging (grant no. R01-AG-034087). A.H. is an employee of MHS who provided funding for this study. The authors declare that they have no competing interests

    Changes In The Visual-Evoked P1 Potential As A Function Of Schizotypy And Background Color In Healthy Young Adults

    No full text
    Research has suggested a hypoactive visual magnocellular (M) pathway in individuals with schizophrenia-spectrum disorders and traits, along with a unique response of this pathway to red light. As these abnormalities only appear in a subset of these samples, they may reflect unknown subtypes with unique etiologies and corresponding neuropathologies. The P1 transient visual-evoked component has been found to be influenced by M-pathway activity; therefore, the current study assessed the P1 component in response to a 64% contrast checker stimulus on white, red, and green background conditions. The sample consisted of 28 undergraduate participants (61% male) who endorsed a continuous range of total scores from the Schizotypal Personality Questionnaire (SPQ). Participants with higher total SPQ scores had a reduced P1 mean amplitude with the white (baseline) background, which was primarily related to the SPQ Magical Thinking subscale score. In addition, while participants with lower total SPQ scores showed the expected reduction in P1 amplitude to the red (vs. green) background, participants with higher total SPQ scores showed no change, which was primarily related to the SPQ Ideas of Reference subscale. This differential change to the red background remained after covarying for the P1 amplitude to the green background, thus representing a relatively independent effect. Further confirmation of these early visual processing relationships to particular clusters of symptoms in related psychiatric samples may assist in revealing unique, currently unknown, subtypes of particular psychiatric disorders such as schizophrenia. This can direct treatment efforts toward more homogeneous neuropathology targets. © 2012 Elsevier Ltd
    corecore