373 research outputs found

    Anti-glycation properties of Illicium verum Hook. f. fruit in-vitro and in a diabetic rat model

    Get PDF
    Background: Chronic hyperglycemic triggers the non-enzymatic glycation of biomolecules, resulting in the production of advanced glycation endproducts, that lead to several micro- and macrovascular complications. Therefore, the discovery of new, effective, and safe anti-glycation agents is an important need. One of the best choices for the management of diabetes is to use complementary and alternative medicinal therapies. Therefore, the present study was designed to evaluate the anti-glycation activity of ethanolic extract of Illicium verum Hook. f. (Star anise, a frequently used spice and medicinally important herb). Methods: The anti-glycation activity of ethanolic extract of Illicium verum Hook. f. was determined by using both in-vitro and in-vivo assays. HSA-fructose glycation model was employed to assess the in-vitro inhibition of protein glycation, additionally cross-linked AGEs (formed by incubating lysozyme with fructose) were assessed by SDS polyacrylamide gel electrophoresis. Dual inhibitory mechanisms, i.e., antioxidant and metal chelating activities, were also evaluated by using DPPH, ABTS, and Fe (II)-chelation assays. Acute toxicity of I. verum extract was also performed (by administrating different doses i.e. 2,000, 1,500, 1,000, and 500 mg/kg of body weight). Finally, in-vivo anti-glycation potential was evaluated by 7 weeks of administration of I. verum extract in streptozotocin-induced diabetic rats. Results: In HSA-fructose glycation model, extract of I. verum showed a good inhibitory activity with IC50 value of 0.11±0.001 mg/mL, as compared to the standard inhibitor, rutin (IC50 = 0.02±0.01 mg/mL). Extract of I. verum showed inhibitory activity in DPPH, and ABTS radical scavenging assays with IC50 values of 130±1.0, and 57±2.0 μg/mL, respectively, while it was found to be inactive in the Fe+2-chelation assay. The extract was found to be non-toxic, and reduce the elevated blood glucose, urea, lipid, liver function parameters, and renal AGEs levels in streptozotocin-induced diabetic rats. Conclusions: These results suggest that I. verum supplementation might help to reduce the burden of AGEs, and may have potential in preventing diabetes-associated complications

    Evaluation of extraction methods for untargeted metabolomic studies for future applications in zebrafish larvae infection models

    Get PDF
    Sample preparation in untargeted metabolomics should allow reproducible extractions of as many molecules as possible. Thus, optimizing sample preparation is crucial. This study compared six diferent extraction procedures to fnd the most suitable for extracting zebrafsh larvae in the context of an infection model. Two one-phase extractions employing methanol (I) and a single miscible phase of methanol/acetonitrile/water (II) and two two-phase methods using phase separation between chloroform and methanol/water combinations (III and IV) were tested. Additional bead homogenization was used for methods III and IV (III_B and IV_B). Nine internal standards and 59 molecules of interest (MoInt) related to mycobacterial infection were used for method evaluation. Two-phase methods (III and IV) led to a lower feature count, higher peak areas of MoInt, especially amino acids, and higher coefcients of variation in comparison to one-phase extractions. Adding bead homogenization increased feature count, peak areas, and CVs. Extraction I showed higher peak areas and lower CVs than extraction II, thus being the most suited one-phase method. Extraction III and IV showed similar results, with III being easier to execute and less prone to imprecisions. Thus, for future applications in zebrafsh larvae metabolomics and infection models, extractions I and III might be chosen

    Hemoglobin level predicts outcome for vulvar cancer patients independent of GLUT-1 and CA-IX expression in tumor tissue

    Get PDF
    Intratumoral hypoxia has been associated with poor prognosis in several solid tumors. The aim of this study was to determine whether the hypoxia-associated markers glucose transporter (GLUT)-1 and carbonic anhydrase (CA)-IX expression and preoperative hemoglobin (Hb) levels correlate with presence of inguinofemoral or distant metastases, and disease-free survival (DSS) in vulvar squamous cell carcinoma (SCC) patients. Vulvar SCC (n = 103) were reviewed for histopathological characteristics by an expert gynecopathologist and stained for GLUT-1 and CA-IX. Clinical data and preoperative Hb levels were obtained from medical records. No significant correlations were observed between GLUT-1 or CA-IX expression patterns and preoperative Hb levels, presence of inguinofemoral or distant metastases and DSS. However, anemic patients (Hb < 11.2 g/dL) had significantly more inguinofemoral metastases and lower Hb level was an independent prognostic factor for a worse DSS (p < 0.001). The number of comorbidic conditions was inversely correlated with preoperative Hb level. Preoperative Hb levels are associated with poor DSS for vulvar SCC patients, whereas tumor hypoxia reflected by GLUT-1 and CA-IX expression does not have a predictive value. Because preoperative Hb levels inversely correlated with the number of comorbidic conditions and not with GLUT-1 or CA-IX expression, it is most likely that preoperative Hb levels represent overall physical condition

    Broad targeting of resistance to apoptosis in cancer

    Get PDF
    Apoptosis or programmed cell death is natural way of removing aged cells from the body. Most of the anti-cancer therapies trigger apoptosis induction and related cell death networks to eliminate malignant cells. However, in cancer, de-regulated apoptotic signaling, particularly the activation of an anti-apoptotic systems, allows cancer cells to escape this program leading to uncontrolled proliferation resulting in tumor survival, therapeutic resistance and recurrence of cancer. This resistance is a complicated phenomenon that emanates from the interactions of various molecules and signaling pathways. In this comprehensive review we discuss the various factors contributing to apoptosis resistance in cancers. The key resistance targets that are discussed include (1) Bcl-2 and Mcl-1 proteins; (2) autophagy processes; (3) necrosis and necroptosis; (4) heat shock protein signaling; (5) the proteasome pathway; (6) epigenetic mechanisms; and (7) aberrant nuclear export signaling. The shortcomings of current therapeutic modalities are highlighted and a broad spectrum strategy using approaches including (a) gossypol; (b) epigallocatechin-3-gallate; (c) UMI-77 (d) triptolide and (e) selinexor that can be used to overcome cell death resistance is presented. This review provides a roadmap for the design of successful anti-cancer strategies that overcome resistance to apoptosis for better therapeutic outcome in patients with cancer

    La Relación Entre la Motivación Docente y Variables de la Organización: Revisión de la Literatura

    Get PDF
    Abstract Teacher motivation plays a central role in education because ofitsimpacton student motivation. Previous reviews of teacher motivation have focused on individual variables and psychopathology indicators. However, it is also important to understand the effect of organizational variableson teacher motivationbecause these highlightthe contextthat the teacher is a part of(i.e.,the school). The literature review in this paper analysed studies related to teacher motivation and a pre-defined group of organizational variablesthat werepublished between 1990 and 2014 in several electronic databases.The study found that organizational culture was the most studied variable associated with teacher motivationand most studies in this area were published between 2010 and 2014.Further,there was a prevalence of quantitative studies. This paper concludes with the theoreticaland practical implications of the results,as well assuggestions for future research directions

    Megalin/LRP2 Expression Is Induced by Peroxisome Proliferator-Activated Receptor -Alpha and -Gamma: Implications for PPARs' Roles in Renal Function

    Get PDF
    BACKGROUND: Megalin is a large endocytic receptor with relevant functions during development and adult life. It is expressed at the apical surface of several epithelial cell types, including proximal tubule cells (PTCs) in the kidney, where it internalizes apolipoproteins, vitamins and hormones with their corresponding carrier proteins and signaling molecules. Despite the important physiological roles of megalin little is known about the regulation of its expression. By analyzing the human megalin promoter, we found three response elements for the peroxisomal proliferator-activated receptor (PPAR). The objective of this study was to test whether megalin expression is regulated by the PPARs. METHODOLOGY/PRINCIPAL FINDINGS: Treatment of epithelial cell lines with PPARα or PPARγ ligands increased megalin mRNA and protein expression. The stimulation of megalin mRNA expression was blocked by the addition of specific PPARα or PPARγ antagonists. Furthermore, PPAR bound to three PPAR response elements located in the megalin promoter, as shown by EMSA, and PPARα and its agonist activated a luciferase construct containing a portion of the megalin promoter and the first response element. Accordingly, the activation of PPARα and PPARγ enhanced megalin expression in mouse kidney. As previously observed, high concentrations of bovine serum albumin (BSA) decreased megalin in PTCs in vitro; however, PTCs pretreated with PPARα and PPARγ agonists avoided this BSA-mediated reduction of megalin expression. Finally, we found that megalin expression was significantly inhibited in the PTCs of rats that were injected with BSA to induce tubulointerstitial damage and proteinuria. Treatment of these rats with PPARγ agonists counteracted the reduction in megalin expression and the proteinuria induced by BSA. CONCLUSIONS: PPARα/γ and their agonists positively control megalin expression. This regulation could have an important impact on several megalin-mediated physiological processes and on pathophysiologies such as chronic kidney disease associated with diabetes and hypertension, in which megalin expression is impaired

    Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes

    Get PDF
    We aggregated coding variant data for 81,412 type 2 diabetes cases and 370,832 controls of diverse ancestry, identifying 40 coding variant association signals (P &lt; 2.2 × 10-7); of these, 16 map outside known risk-associated loci. We make two important observations. First, only five of these signals are driven by low-frequency variants: even for these, effect sizes are modest (odds ratio ≤1.29). Second, when we used large-scale genome-wide association data to fine-map the associated variants in their regional context, accounting for the global enrichment of complex trait associations in coding sequence, compelling evidence for coding variant causality was obtained for only 16 signals. At 13 others, the associated coding variants clearly represent 'false leads' with potential to generate erroneous mechanistic inference. Coding variant associations offer a direct route to biological insight for complex diseases and identification of validated therapeutic targets; however, appropriate mechanistic inference requires careful specification of their causal contribution to disease predisposition.</p

    Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis

    Get PDF
    Funding GMP, PN, and CW are supported by NHLBI R01HL127564. GMP and PN are supported by R01HL142711. AG acknowledge support from the Wellcome Trust (201543/B/16/Z), European Union Seventh Framework Programme FP7/2007–2013 under grant agreement no. HEALTH-F2-2013–601456 (CVGenes@Target) & the TriPartite Immunometabolism Consortium [TrIC]-Novo Nordisk Foundation’s Grant number NNF15CC0018486. JMM is supported by American Diabetes Association Innovative and Clinical Translational Award 1–19-ICTS-068. SR was supported by the Academy of Finland Center of Excellence in Complex Disease Genetics (Grant No 312062), the Finnish Foundation for Cardiovascular Research, the Sigrid Juselius Foundation, and University of Helsinki HiLIFE Fellow and Grand Challenge grants. EW was supported by the Finnish innovation fund Sitra (EW) and Finska Läkaresällskapet. CNS was supported by American Heart Association Postdoctoral Fellowships 15POST24470131 and 17POST33650016. Charles N Rotimi is supported by Z01HG200362. Zhe Wang, Michael H Preuss, and Ruth JF Loos are supported by R01HL142302. NJT is a Wellcome Trust Investigator (202802/Z/16/Z), is the PI of the Avon Longitudinal Study of Parents and Children (MRC & WT 217065/Z/19/Z), is supported by the University of Bristol NIHR Biomedical Research Centre (BRC-1215–2001) and the MRC Integrative Epidemiology Unit (MC_UU_00011), and works within the CRUK Integrative Cancer Epidemiology Programme (C18281/A19169). Ruth E Mitchell is a member of the MRC Integrative Epidemiology Unit at the University of Bristol funded by the MRC (MC_UU_00011/1). Simon Haworth is supported by the UK National Institute for Health Research Academic Clinical Fellowship. Paul S. de Vries was supported by American Heart Association grant number 18CDA34110116. Julia Ramierz acknowledges support by the People Programme of the European Union’s Seventh Framework Programme grant n° 608765 and Marie Sklodowska-Curie grant n° 786833. Maria Sabater-Lleal is supported by a Miguel Servet contract from the ISCIII Spanish Health Institute (CP17/00142) and co-financed by the European Social Fund. Jian Yang is funded by the Westlake Education Foundation. Olga Giannakopoulou has received funding from the British Heart Foundation (BHF) (FS/14/66/3129). CHARGE Consortium cohorts were supported by R01HL105756. Study-specific acknowledgements are available in the Additional file 32: Supplementary Note. The views expressed in this manuscript are those of the authors and do not necessarily represent the views of the National Heart, Lung, and Blood Institute; the National Institutes of Health; or the U.S. Department of Health and Human Services.Peer reviewedPublisher PD
    corecore