889 research outputs found
The radiation balance of the earth-atmosphere system from Nimbus 3 radiation measurements
The radiation balance of the earth-atmosphere system and its components was computed from global measurements of radiation reflected and emitted from the earth to space. These measurements were made from the meteorological satellite Nimbus 3 during the periods from April 16 to August 15, 1969; October 3 to 17, 1969; and January 21 to February 3, 1970. Primarily the method of evaluation, its inherent assumptions, and possible error sources were discussed. Results are presented by various methods: (1) global, hemispherical, and zonal averages obtained from measurements in all semimonthly periods and (2) global maps of the absorbed solar radiation, the albedo, the outgoing longwave radiation, and the radiation balance obtained from measurements during semimonthly periods in each season (May 1 to 15, July 16 to 31, and October 3 to 17, 1969, and January 21 to February 3, 1970). Annual global averages of the albedo and of the outgoing longwave radiation were determined. These values balance to within 1 percent the annual global energy input by solar radiation that was computed for a solar constant
Experimental Fracture Model versus Osteotomy Model in Metacarpal Bone Plate Fixation
Introduction. Osteotomy or fracture models can be used to evaluate mechanical properties of fixation techniques of the hand skeleton in vitro. Although many studies make use of osteotomy models, fracture models simulate the clinical situation more realistically. This study investigates monocortical and bicortical plate fixation on metacarpal bones considering both aforementioned models to decide which method is best suited to test fixation techniques. Methods. Porcine metacarpal bones (n = 40) were randomized into 4 groups. In groups I and II bones were fractured with a modified 3-point bending test. The intact bones represented a further control group to which the other groups after fixation were compared. In groups III and IV a standard osteotomy was carried out. Bones were fixated with plates monocortically (group I, III) and bicortically (group II, IV) and tested for failure. Results. Bones fractured at a mean maximum load of 482.8 N ± 104.8 N with a relative standard deviation (RSD) of 21.7%, mean stiffness was 122.3 ± 35 N/mm. In the fracture model, there was a significant difference (P = 0.01) for maximum load of monocortically and bicortically fixed bones in contrast to the osteotomy model (P = 0.9). Discussion. In the fracture model, because one can use the same bone for both measurements in the intact state and the bone-plate construct states, the impact of inter-individual differences is reduced. In contrast to the osteotomy model there are differences between monocortical and bicortical fixations in the fracture model. Thus simulation of the in vivo situation is better and seems to be suitable for the evaluation of mechanical properties of fixation techniques on metacarpals
Statistical modeling of ground motion relations for seismic hazard analysis
We introduce a new approach for ground motion relations (GMR) in the
probabilistic seismic hazard analysis (PSHA), being influenced by the extreme
value theory of mathematical statistics. Therein, we understand a GMR as a
random function. We derive mathematically the principle of area-equivalence;
wherein two alternative GMRs have an equivalent influence on the hazard if
these GMRs have equivalent area functions. This includes local biases. An
interpretation of the difference between these GMRs (an actual and a modeled
one) as a random component leads to a general overestimation of residual
variance and hazard. Beside this, we discuss important aspects of classical
approaches and discover discrepancies with the state of the art of stochastics
and statistics (model selection and significance, test of distribution
assumptions, extreme value statistics). We criticize especially the assumption
of logarithmic normally distributed residuals of maxima like the peak ground
acceleration (PGA). The natural distribution of its individual random component
(equivalent to exp(epsilon_0) of Joyner and Boore 1993) is the generalized
extreme value. We show by numerical researches that the actual distribution can
be hidden and a wrong distribution assumption can influence the PSHA negatively
as the negligence of area equivalence does. Finally, we suggest an estimation
concept for GMRs of PSHA with a regression-free variance estimation of the
individual random component. We demonstrate the advantages of event-specific
GMRs by analyzing data sets from the PEER strong motion database and estimate
event-specific GMRs. Therein, the majority of the best models base on an
anisotropic point source approach. The residual variance of logarithmized PGA
is significantly smaller than in previous models. We validate the estimations
for the event with the largest sample by empirical area functions. etc
Experimentally induced incomplete burst fractures - a novel technique for calf and human specimens
Background: Fracture morphology is crucial for the clinical decision-making process preceding spinal fracture treatment. The presented experimental approach was designed in order to ensure reproducibility of induced fracture morphology.
Results: The presented method resulted in fracture morphology, found in clinical classification systems like the Magerl classification. In the calf spine samples, 70% displayed incomplete burst fractures corresponding to type A3.1 and A3.2 fractures. In all human samples, superior incomplete burst fractures (Magerl A3.1) were identified by an independent radiologist and spine surgeon.
Conclusions: The presented set up enables the first experimental means to reliably model and study distinct incomplete burst fracture patterns in an in vitro setting. Thus, we envisage this protocol to facilitate further studies on spine fracture treatment of incomplete burst fractures
Keck Adaptive Optics Imaging of 0.5<z<1 Field Galaxies from the Hubble Space Telescope Archive
We have employed natural guide star adaptive optics (AO) on the Keck II
telescope to obtain near-infrared (H and K') images of three field galaxies,
each of redshift greater than 0.5. These are among the highest-redshift
non-active disk galaxies to be imaged with AO. Each of the galaxies was chosen
because it had been observed previously with the Hubble Space Telescope (HST)
Wide Field Planetary Camera 2 (WFPC2) by others. Our AO images in the near
infrared (NIR) closely match both the depth and high spatial resolution of
those optical data. Combining the archival V and I data with our new H and K'
images potentially produces a long wavelength baseline at uniform resolution.
The NIR data probe emission well longward of the 4000-Angstrom break at these
redshifts, and provide stellar fluxes less contaminated by dust. We fit
two-dimensional galaxy bulge-plus-disk models simultaneously in all bands, and
compare stellar-population-synthesis modeling to the photometry of these
separated components. This is an initial foray into combining HST and AO
imaging to produce a high spatial-resolution multi-color dataset for a large
sample of faint galaxies. Our pilot program shows that NIR AO images from large
ground-based observatories, augmented by HST images in the optical, can in
principle provide a powerful tool for the analysis of faint field galaxies.
However, the AO data S/N will have to be increased, and AO PSFs need to be
controlled more carefully than they were here.Comment: 22 pages, 16 Postscript figures. Accepted for publication in the ApJ
Supplement
Sensitivity of Localized Surface Plasmon Resonances to Bulk and Local Changes in the Optical Environment
This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Physical Chemistry C copyright © 2009 American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://dx.doi.org/10.1021/jp810322qSingle rod-shaped and disk-shaped gold nanoparticles with sizes ranging from 60 to 162 nm were analyzed using dark-field scattering spectroscopy. The sensitivity of the localized surface plasmon resonance (LSPR) of each nanoparticle to both a bulk and a local change in the refractive index of the environment was obtained by monitoring the change in the spectral position of the LSPR. It was found that the rods were more sensitive to changes in both the local environment and the bulk environment, in particular rods with a length > 110 nm. This behavior was confirmed by finite element modeling of the structures that clearly indicated a saturation of the relative wavelength shift for the disks as the diameter increased whereas the sensitivity of the rods continued to increase linearly with increasing length. This disparity in the behavior of the two types of nanoparticle may in part be attributed to two principal effects associated with the presence of the substrate: first, that the proportion of the surface area of the nanoparticle in contact with the substrate is larger for the disk than for the rod; second, that the LSPR electromagnetic field is more concentrated within the superstrate for the rod compared to the disk. Further analysis of data obtained from modeling a changing local environment indicates that, although the rods are more sensitive, both rods and disks exhibit a similar field confinement
Plasmonic nanoparticle monomers and dimers: From nano-antennas to chiral metamaterials
We review the basic physics behind light interaction with plasmonic
nanoparticles. The theoretical foundations of light scattering on one metallic
particle (a plasmonic monomer) and two interacting particles (a plasmonic
dimer) are systematically investigated. Expressions for effective particle
susceptibility (polarizability) are derived, and applications of these results
to plasmonic nanoantennas are outlined. In the long-wavelength limit, the
effective macroscopic parameters of an array of plasmonic dimers are
calculated. These parameters are attributable to an effective medium
corresponding to a dilute arrangement of nanoparticles, i.e., a metamaterial
where plasmonic monomers or dimers have the function of "meta-atoms". It is
shown that planar dimers consisting of rod-like particles generally possess
elliptical dichroism and function as atoms for planar chiral metamaterials. The
fabricational simplicity of the proposed rod-dimer geometry can be used in the
design of more cost-effective chiral metamaterials in the optical domain.Comment: submitted to Appl. Phys.
- …