1,230 research outputs found

    Half-Integer Filling Factor States in Quantum Dots

    Full text link
    Emergence of half-integer filling factor states, such as nu=5/2 and 7/2, is found in quantum dots by using numerical many-electron methods. These states have interesting similarities and differences with their counterstates found in the two-dimensional electron gas. The nu=1/2 states in quantum dots are shown to have high overlaps with the composite fermion states. The lower overlap of the Pfaffian state indicates that electrons might not be paired in quantum dot geometry. The predicted nu=5/2 state has high spin polarization which may have impact on the spin transport through quantum dot devices.Comment: 4 pages, accepted to Phys. Rev. Let

    Optimal control of strong-field ionization with time-dependent density-functional theory

    Get PDF
    We show that quantum optimal control theory (OCT) and time-dependent density-functional theory (TDDFT) can be combined to provide realistic femtosecond laser pulses for an enhanced ionization yield in many-electron systems. Using the H2_2-molecule as a test case, the optimized laser pulse from the numerically exact scheme is compared to pulses obtained from OCT+TDDFT within the TD exact-exchange (TDEXX) and the TD local-density approximation (TDLDA). We find that the TDDFT-pulses produces an ionization yield of up to 50% when applied to the exact system. In comparison, pulses with a single frequency but the same fluence typically reach to yields around 5-15%, unless the frequency is carefully tuned into a Fano-type resonance that leads to 30\sim 30% yield. On the other hand, optimization within the exact system alone leads to yields higher than 80%, demonstrating that correlation effects beyond the TDEXX and TDLDA can give rise to even more efficient ionization mechanisms

    Many-electron transport in Aharonov-Bohm interferometers: Time-dependent density-functional study

    Full text link
    We apply time-dependent density-functional theory to study many-electron transport in Aharonov-Bohm interferometers in a non-equilibrium situation. The conductance properties in the system are complex and depend on the enclosed magnetic flux in the interferometer, the number of interacting particles, and the mutual distance of the transport channels at the points of encounter. Generally, the electron-electron interactions do not suppress the visibility of Aharonov-Bohm oscillations if the interchannel distance -- determined by the positioning of the incompressible strips through the external magnetic field -- is optimized. However, the interactions also impose an interesting Aharonov-Bohm phase shift with channel distances below or above the optimal one. This effect is combined with suppressed oscillation amplitudes. We analyze these effects within different approximations for the exchange-correlation potential in time-dependent density-functional theory.Comment: to appear in Eur. J. Phys. B (2013

    Stability of spin droplets in realistic quantum Hall devices

    Full text link
    We study the formation and characteristics of "spin droplets",i.e., compact spin-polarized configurations in the highest occupied Landau level, in an etched quantum Hall device at filling factors 2ν32\leq\nu\leq3. The confining potential for electrons is obtained with self-consistent electrostatic calculations on a GaAs/AlGaAs heterostructure with experimental system parameters. Real-space spin-density-functional calculations for electrons confined in the obtained potential show the appearance of stable spin droplets at ν5/2\nu\sim 5/2. The qualitative features of the spin droplet are similar to those in idealized (parabolic) quantum-dot systems. The universal stability of the state against geometric deformations underline the applicability of spin droplets in, e.g., spin-transport through quantum point contacts.Comment: 11 pages, 6 figure
    corecore