34 research outputs found

    Facilitating transformative science education through futures thinking

    Get PDF
    Purpose The aims and pedagogies in the field of science education are evolving because of global sustainability crises. School science is increasingly concerned with responsible agency and value-based transformation. The purpose of this conceptual paper is to argue that perspectives and methods from the field of futures studies are needed to meet the new transformative aims of science education for sustainable development. Design/methodology/approach This paper analyses some contemporary challenges in science education and gives reasons for introducing a futures perspective into science classrooms. The suggestion is illustrated by reviewing some results, published elsewhere, on future-oriented activities trialled within the European Union project “I SEE” and students’ experiences on them. Findings Recent research has shown that future-oriented science learning activities, involving systems thinking, scenario development and backcasting, can let students broaden their futures perceptions, imagine alternatives and navigate uncertainty. Practising futures thinking in the context of contemporary science offers synergies through shared perspectives on uncertainty, probabilities and creative thinking. Originality/value This paper highlights the relevance of the futures field for science education. Future-oriented activities appear as promising tools in science education for fostering sustainability, agency and change. Yet, further work is needed to integrate futures aspects into science curricula. To that end, the paper calls for collaboration between the fields of futures studies and science education.Peer reviewe

    Young people’s technological images of the future: implications for science and technology education

    Get PDF
    Modern technology has had and continues to have various impacts on societies and human life in general. While technology in some ways defines the 'digital age' of today, discourses of 'technological progress' may dominate discussions of tomorrow. Conceptions of technology and futures seem to be intertwined, as technology has been predicted by experts to lead us anywhere between utopia and extinction within as little as a century. Understandably, hopes and fears regarding technology may also dominate images of the future for our current generation of young people. Meanwhile, global trends in science and technology education have increasingly emphasised goals such as agency, anticipation and active citizenship. As one's agency is connected to one's future perceptions, young people's views of technological change are highly relevant to these educational goals. However, students' images of technological futures have not yet been used to inform the development of science and technology education. We set out to address this issue by investigating 58 secondary school students' essays describing a typical day in 2035 or 2040, focusing on technological surroundings. Qualitative content analysis showed that students' images of the future feature technological changes ranging from improved everyday devices to large-scale technologisation. A variety of effects was attributed to technology, relating to convenience, environment, employment, privacy, general societal progress and more. Technology was discussed both in positive and negative terms, as imagined technological futures were problematised to differing extents. We conclude by discussing the potential implications of the results for the development of future-oriented science and technology education.Peer reviewe

    Lukiolaisten käsityksiä luonnontieteellisen tiedon luonteesta

    Get PDF
    Lukiolaisten käsityksiä luonnontieteellisen tiedon luonteesta tutkittiin kahdeksan teemahaastattelun keinoin. Aineistosta pyrittiin havaitsemaan ja tyypittelemään opiskelijoiden käsityksiä luonnontieteellisen tiedon varmuudesta ja varmuuden tunnistamisesta, pysyvyydestä ja muuttuvuudesta sekä subjektiivisuudesta ja objektiivisuudesta. Tutkimuksen taustalla on aiempien tieteellisen tiedon luonteeseen liittyvien käsitysten tutkimus sekä tällaisten tutkimusten sisältämä käsitys luonnontieteellisen tiedon piirteistä. Opiskelijat näkivät luonnontieteellisen tiedon yleisesti ottaen varmana ja induktiivisesti todistettuna. Tieto samastettiin luonnon säännönmukaisuuksien tunnistamiseen, missä kokeiden merkitys on varmistaa ilmiön toistuvuus. Tiedon varmuuden ideaali saatettiin myös problematisoida, jolloin tieto voitiin nähdä luonteeltaan tentatiivisena. Esimerkiksi Bohrin atomimalli nähtiin ”tutkittuna tietona” pikemminkin kuin ilmiöitä selittävänä mallina. Tieteellinen tieto nähtiin luonteeltaan muuttuvana ja ainakin periaatteessa epävarmana. Tiedon nähtiin muuttuvan ensisijaisesti tarkemmaksi ja paremmaksi. Teorioiden nähtiin myös muuttuvan tiedoksi. Tieteellisen tiedon muutokset liitettiin kehittyvään mittausteknologiaan ja uusien ilmiöiden tunnistamiseen. Opiskelijat eivät juuri osanneet esittää esimerkkejä tieteellisen tiedon muutoksista. Tyypillisin esimerkki oli kopernikaaninen vallankumous. Tieteellinen tieto nähtiin lähinnä objektiivisena, eikä tulkinnan, taustateorioiden tai inhimillisen ajattelun vaikutusta tieteeseen useimmiten tunnistettu. Tieteellisen tutkimuksen katsottiin usein olevan suoraviivaisessa yhteydessä yhteen objektiiviseen todellisuuteen. Toisaalta esimerkiksi Bohrin atomimalli tiedostettiin epätäydelliseksi ja ihmisen tarpeisiin luoduksi. Lisäksi havaittiin opiskelijoiden olevan kykeneviä käymään abstraktin tason keskustelua luonnontieteellisen tiedon luonteesta ja esittämään perusteluja käsityksilleen. Tieteen luonteeseen liittyvän opetuksen ja oppimisen tutkimuksessa on jo pitkään painotettu episteemisten tarkastelukulmien merkitystä osana tiedeopetusta. Yhdyn tutkimukseni perusteella tähän huoleen. Tiedeopetuksen tulee sisältää tieteellisen tiedon luonteen käsittelyä, jotta opiskelijoiden riittävä tieteellinen lukutaito voidaan taata

    Futurising science education: students' experiences from a course on futures thinking and quantum computing

    Get PDF
    To promote students' value-based agency, responsible science and sustainability, science education must address how students think about their personal and collective futures. However, research has shown that young people find it difficult to fully relate to the future and its possibilities, and few studies have focused on the potential of science education to foster futures thinking and agency. We report on a project that further explored this potential by developing future-oriented science courses drawing on the field of futures studies. Phenomenographic analysis was used on interview data to see what changes upper-secondary school students saw in their futures perceptions and agentic orientations after attending a course which adapted futures thinking skills in the context of quantum computing and technological approaches to global problems. The results show students perceiving the future and technological development as more positive but also more unpredictable, seeing their possibilities for agency as clearer and more promising (especially by identifying with their peers or aspired career paths), and feeling a deeper connection to the otherwise vague idea of futures. Students also felt they had learned to question deterministic thinking and to think more creatively about their own lives as well as technological and non-technological solutions to global problems. Both quantum physics and futures thinking opened new perspectives on uncertainty and probabilistic thinking. Our results provide further validation for a future-oriented approach to science education, and highlight essential synergies between futures thinking skills, agency, and authentic socio-scientific issues in developing science education for the current age.Peer reviewe

    Kvanttilaskentaa lukiolaisille

    Get PDF
    Suuren yleisön keskuudessa kvanttifysiikka on tunnettu pahamaineisen vaikeana mutta myös uteliaisuutta herättävänä fysiikan osa-alueena. Kynnyskysymyksenä aiheeseen tutustumiselle lienee sen vaatima matematiikka: Jotta aihepiiriin pääsee kaivautumaan pintaa syvemmälle, sen ilmiöitä pitää tottua käsittelemään matematiikan keinoin – ja tarvittavaan matematiikkaan pääsee kiinni yleensä vasta korkeakouluopinnoissa. Lukiotasolla kvanttifysiikkaa käsitellään kvalitatiivisesti, mutta aihepiirin käsittelyssä päästään hädin tuskin raapaisemaan sata vuotta sitten kehitettyjä teorioita. Sama tilanne vaikuttaa olevan monen muunkin maan fysiikan toisen asteen koulutuksessa

    A novel solution for utilizing liquid fractions from slow pyrolysis and hydrothermal carbonization - Acidification of animal slurry

    Get PDF
    Pyrolysis and hydrothermal carbonization (HTC) have recently gained much interest in the field of biomass processing. This is due to the process flexibility with respect to raw materials and the range of potential applications proposed for the end products. In addition to the main product, biochar, the processes yield a liquid fraction that has turned out to be challenging to productize. Considering the feasibility of the thermochemical conversion technologies, it is crucial that all the produced fractions can be utilized reasonably and no waste fractions expensive to dispose remain. In spite of active research and development work, unambiguous uses for the liquid fractions have not been recognized yet. Please click on the file below for full content of the abstract

    Future-oriented science education manifesto

    Get PDF
    As citizens of the world, we are dealing with all kinds of complex issues and challenges, such as climate change, global health, multiculturalism, social justice, artificial intelligence and new technologies. These challenges require us to build visions of the future that empower our actions today. This will define the future for all of us. Research shows that people expect the future to be greatly influenced by science and technology. We, however, need to ensure that the advancements in science are in line with the futures we envision. It is, therefore, essential to think critically about the possibilities and pitfalls of science-driven innovations and to connect them in an interdisciplinary way. This will increase scientific literacy, agency, and responsible research and innovation. Significant overlap exists between futures thinking skills and scientific competencies, such as problem-solving and critical and creative thinking. However, extending the scientific competencies with additional skills related to futures thinking, like time perspective, agency beliefs, openness to alternatives, systems perception, and concern for others, will further enrich science education and prepare students for tomorrow. We, therefore, share: 10 RECOMMENDATIONS TO STIMULATE FUTURES THINKING IN YOUR CLASSROOM.Non peer reviewe
    corecore