159 research outputs found
Magnetic ordering of EuTe/PbTe multilayers determined by x-ray resonant diffraction
In this work we use resonant x-ray diffraction combined with polarization analysis of the diffracted beam to study the magnetic ordering in EuTe/PbTe multilayers. The presence of satellites at the (1/2 1/2 1/2) magnetic reflection of a 50 /repetition EuTe/PbTe superlattice demonstrated the existence of magnetic correlations among the alternated EuTe layers. The behavior of the satellites intensity as T increases toward the Neel temperature T(N) indicates that these correlations persist nearly up to T(N) and suggests the preferential decrease of the magnetic order parameter of external monolayers of each EuTe layer within the superlattice. (C) 2008 American Institute of Physics.922
Sharp lines in the absorption edge of EuTe and PbEuTe in high magnetic fields
The optical absorption spectra in the region of the \fd transition energies
of epitaxial layers of of EuTe and \PbEuTe, grown by molecular beam epitaxy,
were studied using circularly polarized light, in the Faraday configuration.
Under \sigmam polarization a sharp symmetric absorption line (full width at
half-maximum 0.041 eV) emerges at the low energy side of the band-edge
absorption, for magnetic fields intensities greater than 6 T. The absorption
line shows a huge red shift (35 meV/T) with increasing magnetic fields. The
peak position of the absorption line as a function of magnetic field is
dominated by the {\em d-f} exchange interaction of the excited electron and the
\Euion spins in the lattice. The {\em d-f} exchange interaction energy was
estimated to be eV. In \PbEuTe the same absorption line
is detected, but it is broader, due to alloy disorder, indicating that the
excitation is localized within a finite radius. From a comparison of the
absorption spectra in EuTe and \PbEuTe the characteristic radius of the
excitation is estimated to be \AA.Comment: Journal of Physics: Condensed Matter (2004, at press
Characterization and evolution of cell division and cell wall synthesis genes in the bacterial phyla Verrucomicrobia, Lentisphaerae, Chlamydiae and Planctomycetes and phylogenetic comparison with rRNA genes
In the past, studies on the relationships of the bacterial phyla Planctomycetes, Chlamydiae, Lentisphaerae, and
Verrucomicrobia using different phylogenetic markers have been controversial. Investigations based on 16S
rRNA sequence analyses suggested a relationship of the four phyla, showing the branching order Planctomycetes,
Chlamydiae, Verrucomicrobia/Lentisphaerae. Phylogenetic analyses of 23S rRNA genes in this study also
support a monophyletic grouping and their branching order—this grouping is significant for understanding
cell division, since the major bacterial cell division protein FtsZ is absent from members of two of the phyla
Chlamydiae and Planctomycetes. In Verrucomicrobia, knowledge about cell division is mainly restricted to the
recent report of ftsZ in the closely related genera Prosthecobacter and Verrucomicrobium. In this study, genes of
the conserved division and cell wall (dcw) cluster (ddl, ftsQ, ftsA, and ftsZ) were characterized in all verrucomicrobial
subdivisions (1 to 4) with cultivable representatives (1 to 4). Sequence analyses and transcriptional
analyses in Verrucomicrobia and genome data analyses in Lentisphaerae suggested that cell division is based on
FtsZ in all verrucomicrobial subdivisions and possibly also in the sister phylum Lentisphaerae. Comprehensive
sequence analyses of available genome data for representatives of Verrucomicrobia, Lentisphaerae, Chlamydiae,
and Planctomycetes strongly indicate that their last common ancestor possessed a conserved, ancestral type of
dcw gene cluster and an FtsZ-based cell division mechanism. This implies that Planctomycetes and Chlamydiae
may have shifted independently to a non-FtsZ-based cell division mechanism after their separate branchings
from their last common ancestor with Verrucomicrobia
Chiral Phonons with Giant Magnetic Moments in a Topological Crystalline Insulator
We have studied the magnetic response of transverse optical phonons in
PbSnTe films. Polarization-dependent terahertz
magnetospectroscopy measurements revealed Zeeman splittings and diamagnetic
shifts, demonstrating that these phonon modes become chiral in magnetic fields.
Films in the topological crystalline insulator phase () exhibited
magnetic moment values that are larger than those for topologically trivial
films () by two orders of magnitude. Furthermore, the sign of the
effective -factor was opposite in the two phases, which can be explained by
our theoretical model. These results strongly hint at the existence of
interplay between the magnetic properties of chiral phonons and the topology of
electronic band structure.Comment: 6 pages, 3 figures, see Supplemental Material in the Ancillary
director
The CD3-Zeta Chimeric Antigen Receptor Overcomes TCR Hypo-Responsiveness of Human Terminal Late-Stage T Cells
Adoptive therapy of malignant diseases with tumor-specific cytotoxic T cells showed remarkable efficacy in recent trials. Repetitive T cell receptor (TCR) engagement of target antigen, however, inevitably ends up in hypo-responsive cells with terminally differentiated KLRG-1+ CD57+ CD7− phenotype limiting their therapeutic efficacy. We here revealed that hypo-responsiveness of CMV-specific late-stage CD8+ T cells is due to reduced TCR synapse formation compared to younger cells. Membrane anchoring of TCR components contributes to T cell hypo-responsiveness since dislocation of galectin-3 from the synapse by swainsonine restored both TCR synapse formation and T cell response. Transgenic expression of a CD3-zeta signaling chimeric antigen receptor (CAR) recovered hypo-responsive T cells to full effector functions indicating that the defect is restricted to TCR membrane components while synapse formation of the transgenic CAR was not blocked. CAR engineered late-stage T cells released cytokines and mediated redirected cytotoxicity as efficiently as younger effector T cells. Our data provide a rationale for TCR independent, CAR mediated activation in the adoptive cell therapy to avoid hypo-responsiveness of late-stage T cells upon repetitive antigen encounter
Spin-induced optical second harmonic generation in the centrosymmetric magnetic semiconductors EuTe and EuSe
Spectroscopy of the centrosymmetric magnetic semiconductors EuTe and EuSe
reveals spin-induced optical second harmonic generation (SHG) in the band gap
vicinity at 2.1-2.4eV. The magnetic field and temperature dependence
demonstrates that the SHG arises from the bulk of the materials due to a novel
type of nonlinear optical susceptibility caused by the magnetic dipole
contribution combined with spontaneous or induced magnetization. This
spin-induced susceptibility opens access to a wide class of centrosymmetric
systems by harmonics generation spectroscopy.Comment: 5 pages, 3 figures, submitted to PR
- …