533 research outputs found
Turbulent Coronal Heating Mechanisms: Coupling of Dynamics and Thermodynamics
Context. Photospheric motions shuffle the footpoints of the strong axial
magnetic field that threads coronal loops giving rise to turbulent nonlinear
dynamics characterized by the continuous formation and dissipation of
field-aligned current sheets where energy is deposited at small-scales and the
heating occurs. Previous studies show that current sheets thickness is orders
of magnitude smaller than current state of the art observational resolution
(~700 km).
Aim. In order to understand coronal heating and interpret correctly
observations it is crucial to study the thermodynamics of such a system where
energy is deposited at unresolved small-scales.
Methods. Fully compressible three-dimensional magnetohydrodynamic simulations
are carried out to understand the thermodynamics of coronal heating in the
magnetically confined solar corona.
Results. We show that temperature is highly structured at scales below
observational resolution and nonhomogeneously distributed so that only a
fraction of the coronal mass and volume gets heated at each time.
Conclusions. This is a multi-thermal system where hotter and cooler plasma
strands are found one next to the other also at sub-resolution scales and
exhibit a temporal dynamics.Comment: A&A Letter, in pres
Interchange reconnection in a turbulent Corona
Magnetic reconnection at the interface between coronal holes and loops,
so-called interchange reconnection, can release the hotter, denser plasma from
magnetically confined regions into the heliosphere, contributing to the
formation of the highly variable slow solar wind. The interchange process is
often thought to develop at the apex of streamers or pseudo-streamers, near Y
and X-type neutral points, but slow streams with loop composition have been
recently observed along fanlike open field lines adjacent to closed regions,
far from the apex. However, coronal heating models, with magnetic field lines
shuffled by convective motions, show that reconnection can occur continuously
in unipolar magnetic field regions with no neutral points: photospheric motions
induce a magnetohydrodynamic turbulent cascade in the coronal field that
creates the necessary small scales, where a sheared magnetic field component
orthogonal to the strong axial field is created locally and can reconnect. We
propose that a similar mechanism operates near and around boundaries between
open and closed regions inducing a continual stochastic rearrangement of
connectivity. We examine a reduced magnetohydrodynamic model of a simplified
interface region between open and closed corona threaded by a strong unipolar
magnetic field. This boundary is not stationary, becomes fractal, and field
lines change connectivity continuously, becoming alternatively open and closed.
This model suggests that slow wind may originate everywhere along loop-coronal
hole boundary regions, and can account naturally and simply for outflows at and
adjacent to such boundaries and for the observed diffusion of slow wind around
the heliospheric current sheet.Comment: 6 pages, 5 figures, 1 movie, ApJ Letters (accepted
Heating of coronal loops: weak MHD turbulence and scaling laws
To understand the nonlinear dynamics of the Parker scenario for coronal
heating, long-time high-resolution simulations of the dynamics of a coronal
loop in cartesian geometry are carried out. A loop is modeled as a box extended
along the direction of the strong magnetic field in which the system is
embedded. At the top and bottom plates, which represent the photosphere,
velocity fields mimicking photospheric motions are imposed.
We show that the nonlinear dynamics is described by different regimes of MHD
anisotropic turbulence, with spectra characterized by intertial range power
laws whose indexes range from Kolmogorov-like values () up to . We briefly describe the bearing for coronal heating rates.Comment: 8 pages, 4 figure
Turbulence, Energy Transfers and Reconnection in Compressible Coronal Heating Field-line Tangling Models
MHD turbulence has long been proposed as a mechanism for the heating of
coronal loops in the framework of the Parker scenario for coronal heating. So
far most of the studies have focused on its dynamical properties without
considering its thermodynamical and radiative features, because of the very
demanding computational requirements. In this paper we extend this previous
research to the compressible regime, including an energy equation, by using
HYPERION, a new parallelized, viscoresistive, three-dimensional compressible
MHD code. HYPERION employs a Fourier collocation -- finite difference spatial
discretization, and uses a third-order Runge-Kutta temporal discretization. We
show that the implementation of a thermal conduction parallel to the DC
magnetic field induces a radiative emission concentrated at the boundaries,
with properties similar to the chromosphere--transition region--corona system.Comment: 4 pages, 4 figures, Solar Wind 12 proceedings (in press
Emergency Room to the Courtroom: Providing Abortion Care Under EMTALA and State Abortion Bans
After the Supreme Court eliminated the constitutional right to abortion in Dobbs v. Jackson Women’s Health Organization, states began to broadly criminalize abortion. Abortion is criminalized and restricted even in situations that constitute an emergency medical condition under the Emergency Medical Treatment and Labor Act (“EMTALA”). State abortion bans with limited medical exceptions conflict with EMTALA’s protections for emergency screening and stabilization. Legal challenges to the scope of EMTALA show a growing divide and uncertainty on emergency abortion care in the United States. This Comment will discuss why physicians cannot confidently provide quality and competent abortion care without the statutory protections afforded within EMTALA. This Comment argues that the vague and medically inaccurate language in state abortion bans must be preempted by EMTALA. Ensuring physicians are obligated to follow EMTALA’s guidelines will lead to the best national public health and safety outcomes. It is within the federal government’s power and responsibility to ensure state restrictions on emergency abortion care do not interfere with national protections for emergency department screening and stabilization
Magnetohydrodynamic Turbulent Cascade of Coronal Loop Magnetic Fields
The Parker model for coronal heating is investigated through a high
resolution simulation. An inertial range is resolved where fluctuating magnetic
energy E_M (k_perp) \propto k_\perp^{-2.7} exceeds kinetic energy E_K (k_\perp)
\propto k_\perp^{-0.6}. Increments scale as \delta b_\ell \simeq \ell^{-0.85}
and \delta u_\ell \simeq \ell^{+0.2} with velocity increasing at small scales,
indicating that magnetic reconnection plays a prime role in this turbulent
system. We show that spectral energy transport is akin to standard
magnetohydrodynamic (MHD) turbulence even for a system of reconnecting current
sheets sustained by the boundary. In this new MHD turbulent cascade, kinetic
energy flows are negligible while cross-field flows are enhanced, and through a
series of "reflections" between the two fields, cascade more than half of the
total spectral energy flow.Comment: 5 pages, 5 figures, to appear in Physical Review E - Rapid. Com
- …