109 research outputs found
Identification of a novel locus on 2q for autosomal dominant high-grade myopia.
PURPOSE. Myopia, or nearsightedness, is a visual disorder of high and growing prevalence in the United States and in other countries. Pathologic high myopia, or myopia of ≤-6.00 D, predisposes individuals to retinal detachment, macular degeneration, cataracts, and glaucoma. Autosomal dominant (AD) nonsyndromic high-grade myopia has been mapped to loci on 18p11.31, 12q21-q23, 17q21-q23, and 7q36. This is the report of significant linkage to a novel locus on the long arm of chromosome 2 in a large, multigenerational family with AD high-grade myopia. METHODS. The family contains 31 participating members (14 affected). The average spherical refractive error for affected individuals was -14.46 D (range, -7.25 to -27.00). Before a genome screening was undertaken, linkage to intragenic or flanking markers for the myopic genetic syndromes of Stickler syndrome types I, II, and III; Marfan syndrome; and juvenile glaucoma were ruled out. In addition, no linkage was found to the known AD high-grade myopia loci listed above. A full genome screen of the family was performed with 382 microsatellite markers with an average intermarker distance of 10 cM. SimWalk2 software was used for multipoint linkage analysis based on an AD model with a penetrance of 90% and a disease allele frequency of 0.01. RESULTS. Fine-point mapping with an additional nine custommade and five commercial markers yielded a maximum two-point lod score of 5.67 at marker D2S2348. Results of multipoint analysis indicate that the 1-unit support intervals for this new locus spans approximately 9.1 cM from (238.7 to 247.8 cM) on the chromosome 2 genetic map at q37.1. CONCLUSIONS. A novel locus for AD high-grade myopia has been determined, providing further evidence of genetic heterogeneity for this disorder
CNV Workshop: an integrated platform for high-throughput copy number variation discovery and clinical diagnostics
<p>Abstract</p> <p>Background</p> <p>Recent studies have shown that copy number variations (CNVs) are frequent in higher eukaryotes and associated with a substantial portion of inherited and acquired risk for various human diseases. The increasing availability of high-resolution genome surveillance platforms provides opportunity for rapidly assessing research and clinical samples for CNV content, as well as for determining the potential pathogenicity of identified variants. However, few informatics tools for accurate and efficient CNV detection and assessment currently exist.</p> <p>Results</p> <p>We developed a suite of software tools and resources (CNV Workshop) for automated, genome-wide CNV detection from a variety of SNP array platforms. CNV Workshop includes three major components: detection, annotation, and presentation of structural variants from genome array data. CNV detection utilizes a robust and genotype-specific extension of the Circular Binary Segmentation algorithm, and the use of additional detection algorithms is supported. Predicted CNVs are captured in a MySQL database that supports cohort-based projects and incorporates a secure user authentication layer and user/admin roles. To assist with determination of pathogenicity, detected CNVs are also annotated automatically for gene content, known disease loci, and gene-based literature references. Results are easily queried, sorted, filtered, and visualized via a web-based presentation layer that includes a GBrowse-based graphical representation of CNV content and relevant public data, integration with the UCSC Genome Browser, and tabular displays of genomic attributes for each CNV.</p> <p>Conclusions</p> <p>To our knowledge, CNV Workshop represents the first cohesive and convenient platform for detection, annotation, and assessment of the biological and clinical significance of structural variants. CNV Workshop has been successfully utilized for assessment of genomic variation in healthy individuals and disease cohorts and is an ideal platform for coordinating multiple associated projects.</p> <p>Availability and Implementation</p> <p>Available on the web at: <url>http://sourceforge.net/projects/cnv</url></p
On the Population of Wind-Accreting Neutron Stars in the Galaxy
We explore the possibility that neutron stars accreting from the winds of
main-sequence stellar companions account for a significant fraction of
low-luminosity, hard X-ray sources (L_X <~ 10^35 ergs/s; 1-10 keV) in the
Galaxy. This work was motivated by recent Chandra observations of the Galactic
center by Wang et al. (2002). Our calculations indicate that many of the
discrete X-ray sources detected in this survey may be wind-accreting neutron
stars, and that many more may be discovered with deeper X-ray observations. We
propose that an infrared observing campaign be undertaken to search for the
stellar counterparts of these X-ray sources.Comment: submitted to ApJ Letter
Genome-Wide TOP2A DNA Cleavage is Biased Toward Translocated and Highly Transcribed Loci
Type II topoisomerases orchestrate proper DNA topology, and they are the targets of anti-cancer drugs that cause treatment-related leukemias with balanced translocations. Here, we develop a high-throughput sequencing technology to define TOP2 cleavage sites at single-base precision, and use the technology to characterize TOP2A cleavage genome-wide in the human K562 leukemia cell line. We find that TOP2A cleavage has functionally conserved local sequence preferences, occurs in cleavage cluster regions (CCRs), and is enriched in introns and lincRNA loci. TOP2A CCRs are biased toward the distal regions of gene bodies, and TOP2 poisons cause a proximal shift in their distribution. We find high TOP2A cleavage levels in genes involved in translocations in TOP2 poison–related leukemia. In addition, we find that a large proportion of genes involved in oncogenic translocations overall contain TOP2A CCRs. The TOP2A cleavage of coding and lincRNA genes is independently associated with both length and transcript abundance. Comparisons to ENCODE data reveal distinct TOP2A CCR clusters that overlap with marks of transcription, open chromatin, and enhancers. Our findings implicate TOP2A cleavage as a broad DNA damage mechanism in oncogenic translocations as well as a functional role of TOP2A cleavage in regulating transcription elongation and gene activation
The Galactic Population of Low- and Intermediate-Mass X-ray Binaries
(abridged) We present the first study that combines binary population
synthesis in the Galactic disk and detailed evolutionary calculations of low-
and intermediate-mass X-ray binaries (L/IMXBs). We show that the formation
probability of IMXBs with initial donor masses of 1.5--4 Msun is typically >~5
times higher than that of standard LMXBs, and suggest that the majority of the
observed systems may have descended from IMXBs. Distributions at the current
epoch of the orbital periods, donor masses, and mass accretion rates have been
computed, as have orbital-period distributions of BMPs. Several significant
discrepancies between the theoretical and observed distributions are discussed.
The orbital-period distribution of observed BMPs strongly favors cases where
the envelope of the neutron-star progenitor is more easily ejected during the
common-envelope phase. However, this leads to a >~100-fold overproduction of
the theoretical number of luminous X-ray sources relative to the total observed
number of LMXBs. X-ray irradiation of the donor star may result in a dramatic
reduction in the X-ray active lifetime of L/IMXBs, thus possibly resolving the
overproduction problem, as well as the long-standing BMP/LMXB birthrate
problem.Comment: 12 pages, emulateapj, submitted to Ap
HnRNPA2 is a Novel Histone Acetyltransferase That Mediates Mitochondrial Stress-Induced Nuclear Gene Expression
Reduced mitochondrial DNA copy number, mitochondrial DNA mutations or disruption of electron transfer chain complexes induce mitochondria-to-nucleus retrograde signaling, which induces global change in nuclear gene expression ultimately contributing to various human pathologies including cancer. Recent studies suggest that these mitochondrial changes cause transcriptional reprogramming of nuclear genes although the mechanism of this cross talk remains unclear. Here, we provide evidence that mitochondria-to-nucleus retrograde signaling regulates chromatin acetylation and alters nuclear gene expression through the heterogeneous ribonucleoprotein A2 (hnRNAP2). These processes are reversed when mitochondrial DNA content is restored to near normal cell levels. We show that the mitochondrial stress-induced transcription coactivator hnRNAP2 acetylates Lys 8 of H4 through an intrinsic histone lysine acetyltransferase (KAT) activity with Arg 48 and Arg 50 of hnRNAP2 being essential for acetyl-CoA binding and acetyltransferase activity. H4K8 acetylation at the mitochondrial stress-responsive promoters by hnRNAP2 is essential for transcriptional activation. We found that the previously described mitochondria-to-nucleus retrograde signaling-mediated transformation of C2C12 cells caused an increased expression of genes involved in various oncogenic processes, which is retarded in hnRNAP2 silenced or hnRNAP2 KAT mutant cells. Taken together, these data show that altered gene expression by mitochondria-to-nucleus retrograde signaling involves a novel hnRNAP2-dependent epigenetic mechanism that may have a role in cancer and other pathologies
Bondi-Hoyle-Lyttleton Accretion Model for Low-luminosity X-ray Sources in Globular Clusters
We present a new model for low-luminosity X-ray sources in globular clusters,
with L_x < 10^34 erg/s. The model we propose is that of a single neutron star
accreting from cluster gas that has accumulated as a natural product of stellar
evolution. An analytic luminosity function is derived under the assumption that
the speed distribution of neutron stars in the central region of a cluster is
described by a Maxwellian, and that the density and temperature of the gas are
uniform. Predictions of the model and implications for the gas content of
globular clusters are discussed.Comment: Accepted by ApJ. Minor changes and expanded conclusions sectio
Kepler eclipsing binary stars. VII. the catalogue of eclipsing binaries found in the entire Kepler data set
The primary Kepler Mission provided nearly continuous monitoring of ~200,000 objects with unprecedented photometric precision. We present the final catalog of eclipsing binary systems within the 105 deg2 Kepler field of view. This release incorporates the full extent of the data from the primary mission (Q0-Q17 Data Release). As a result, new systems have been added, additional false positives have been removed, ephemerides and principal parameters have been recomputed, classifications have been revised to rely on analytical models, and eclipse timing variations have been computed for each system. We identify several classes of systems including those that exhibit tertiary eclipse events, systems that show clear evidence of additional bodies, heartbeat systems, systems with changing eclipse depths, and systems exhibiting only one eclipse event over the duration of the mission. We have updated the period and galactic latitude distribution diagrams and included a catalog completeness evaluation. The total number of identified eclipsing and ellipsoidal binary systems in the Kepler field of view has increased to 2878, 1.3% of all observed Kepler targets
Masses, radii, and orbits of small Kepler planets : The transition from gaseous to rocky planets
We report on the masses, sizes, and orbits of the planets orbiting 22 Kepler stars. There are 49 planet candidates around these stars, including 42 detected through transits and 7 revealed by precise Doppler measurements of the host stars. Based on an analysis of the Kepler brightness measurements, along with high-resolution imaging and spectroscopy, Doppler spectroscopy, and (for 11 stars) asteroseismology, we establish low false-positive probabilities (FPPs) for all of the transiting planets (41 of 42 have an FPP under 1%), and we constrain their sizes and masses. Most of the transiting planets are smaller than three times the size of Earth. For 16 planets, the Doppler signal was securely detected, providing a direct measurement of the planet's mass. For the other 26 planets we provide either marginal mass measurements or upper limits to their masses and densities; in many cases we can rule out a rocky composition. We identify six planets with densities above 5 g cm-3, suggesting a mostly rocky interior for them. Indeed, the only planets that are compatible with a purely rocky composition are smaller than 2 R ⊕. Larger planets evidently contain a larger fraction of low-density material (H, He, and H2O).Peer reviewedFinal Accepted Versio
Evaluation of polygenic risk scores for breast and ovarian cancer risk prediction in BRCA1 and BRCA2 mutation carriers
Background: Genome-wide association studies (GWAS) have identified 94 common single-nucleotide polymorphisms (SNPs) associated with breast cancer (BC) risk and 18 associated with ovarian cancer (OC) risk. Several of these are also associated with risk of BC or OC for women who carry a pathogenic mutation in the high-risk BC and OC genes BRCA1 or BRCA2. The combined effects of these variants on BC or OC risk for BRCA1 and BRCA2 mutation carriers have not yet been assessed while their clinical management could benefit from improved personalized risk estimates.
Methods: We constructed polygenic risk scores (PRS) using BC and OC susceptibility SNPs identified through population-based GWAS: for BC (overall, estrogen receptor [ER]-positive, and ER-negative) and for OC. Using data from 15 252 female BRCA1 and 8211 BRCA2 carriers, the association of each PRS with BC or OC risk was evaluated using a weighted cohort approach, with time to diagnosis as the outcome and estimation of the hazard ratios (HRs) per standard deviation increase in the PRS.
Results: The PRS for ER-negative BC displayed the strongest association with BC risk in BRCA1 carriers (HR = 1.27, 95% confidence interval [CI] = 1.23 to 1.31, P = 8.2 x 10(53)). In BRCA2 carriers, the strongest association with BC risk was seen for the overall BC PRS (HR = 1.22, 95% CI = 1.17 to 1.28, P = 7.2 x 10(-20)). The OC PRS was strongly associated with OC risk for both BRCA1 and BRCA2 carriers. These translate to differences in absolute risks (more than 10% in each case) between the top and bottom deciles of the PRS distribution; for example, the OC risk was 6% by age 80 years for BRCA2 carriers at the 10th percentile of the OC PRS compared with 19% risk for those at the 90th percentile of PRS.
Conclusions: BC and OC PRS are predictive of cancer risk in BRCA1 and BRCA2 carriers. Incorporation of the PRS into risk prediction models has promise to better inform decisions on cancer risk management
- …