17 research outputs found

    Y1 and Y5 Receptors Are Both Required for the Regulation of Food Intake and Energy Homeostasis in Mice

    Get PDF
    Neuropeptide Y (NPY) acting in the hypothalamus is one of the most powerful orexigenic agents known. Of the five known Y receptors, hypothalamic Y1 and Y5 have been most strongly implicated in mediating hyperphagic effects. However, knockout of individual Y1 or Y5 receptors induces late-onset obesity – and Y5 receptor knockout also induces hyperphagia, possibly due to redundancy in functions of these genes. Here we show that food intake in mice requires the combined actions of both Y1 and Y5 receptors. Germline Y1Y5 ablation in Y1Y5−/− mice results in hypophagia, an effect that is at least partially mediated by the hypothalamus, since mice with adult-onset Y1Y5 receptor dual ablation targeted to the paraventricular nucleus (PVN) of the hypothalamus (Y1Y5Hyp/Hyp) also exhibit reduced spontaneous or fasting-induced food intake when fed a high fat diet. Interestingly, despite hypophagia, mice with germline or hypothalamus-specific Y1Y5 deficiency exhibited increased body weight and/or increased adiposity, possibly due to compensatory responses to gene deletion, such as the decreased energy expenditure observed in male Y1Y5−/− animals relative to wildtype values. While Y1 and Y5 receptors expressed in other hypothalamic areas besides the PVN – such as the dorsomedial nucleus and the ventromedial hypothalamus – cannot be excluded from having a role in the regulation of food intake, these studies demonstrate the pivotal, combined role of both Y1 and Y5 receptors in the mediation of food intake

    Chronic administration of neuropeptide Y into the lateral ventricle of C57BL/6J male mice produces an obesity syndrome including hyperphagia, hyperleptinemia, insulin resistance, and hypogonadism

    No full text
    Neuropeptide Y (NPY) is involved in the central regulation of appetite, sexual behavior, and reproductive function. We have previously shown that chronic infusion of NPY into the lateral ventricle of normal rats produced an obesity syndrome characterized by hyperphagia, hyperinsulinism and collapse of reproductive function. We further demonstrated that acute inhibition of LH secretion in castrated rats was preferentially mediated by the NPY receptor subtype 5 (Y(5)). In the present study, the effects of chronic, central infusion of NPY, or the mixed Y2-Y5 agonist PYY(3-36), were evaluated both in normal male C57BL/6J mice and Sprague-Dawley rats. After a 7-day infusion to male mice, both NPY and PYY(3-36) at 5 nmol per day, induced marked hyperphagia leading to significant increases in body and fat pad weights. Furthermore, both compounds markedly reduced several markers of the reproductive axis. In the rat study, PYY(3-36) was more active than NPY to inhibit the pituitary-testicular axis, confirming the importance of the Y5 subtype for such effects. In the mouse, chronic NPY infusion induced a sustained increase in corticosterone and insulin secretion. Plasma leptin levels were also markedly increased possibly explaining the observed reduction in gene expression for hypothalamic NPY. Gene expression for hypothalamic POMC was reduced in the NPY- or PYY(3-36)-infused mice, suggesting that NPY exacerbated food intake by both acting through its own receptor(s), and reducing the satiety signal driven by the POMC-derived alpha-MSH. The present study in the mouse suggests in analogy with available rat data, that constant exposure to elevated NPY in the hypothalamic area unabatedly enhances food intake leading to an obesity syndrome including increased adiposity, insulin resistance, hypercorticism, and hypogonadism, reminiscent of the phenotype of the ob/ob mouse, that displays elevated hypothalamic NPY secondary to lack of leptin negative feedback action

    Stimulation of the gonadotropic axis by the neuropeptide Y receptor Y1 antagonist/Y4 agonist 1229U91 in the male rat

    No full text
    Neuropeptide Y (NPY) is a highly potent orexigenic substance that is also known to modulate gonadotropin secretion. Five receptor subtypes for NPY have been identified, and a potent antagonist for the receptor subtype 1 (Y1), 1229U91, also known as GW1229 or GR231118, has been described. Subsequently, 1229U91 was also shown to represent a highly potent agonist for the Y4 receptor subtype. Very unexpectedly, intracerebroventricular administration of 1229U91 elicited an intense, dose-dependent surge of both luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in intact male rats that lasted for 6 h. Such stimulation was absent when a potent gonadotropin-releasing hormone antagonist was administered systemically, suggesting that 1229U91 acts centrally to stimulate gonadotropin-releasing hormone release. 1229U91 administration had no effect on growth hormone, thyroid-stimulating hormone, and corticosterone secretions. In addition to 1229U91, four other parent dimer molecules described earlier produced a marked and sustained stimulation of LH when injected intracerebroventricularly that was proportional to their binding affinity for the Y4 receptor. Central administration of the specific Y1 antagonist BIBO3304 (20 microgram) had no effect on LH secretion, making it unlikely for 1229U91 to stimulate LH secretion by an antagonistic action on the Y1 receptor subtype, thus suggesting a Y4 receptor mediation. In conclusion, the 1229U91 molecule displays an interesting conformational epitope that is able to generate large LH surges, possibly by activating Y4 or Y4-like receptor subtypes or by acting on a NPY receptor unrelated target
    corecore