257 research outputs found

    Meroplankton Diversity, Seasonality and Life-History Traits Across the Barents Sea Polar Front Revealed by High-Throughput DNA Barcoding

    Get PDF
    In many species of marine benthic invertebrates, a planktonic larval phase plays a critical role in dispersal. Very little is known about the larval biology of most species, however, in part because species identification has historically been hindered by the microscopic size and morphological similarity among related taxa. This study aimed to determine the taxonomic composition and seasonal distribution of meroplankton in the Barents Sea, across the Polar Front. We collected meroplankton during five time points seasonally and used high-throughput DNA barcoding of individual larvae to obtain species-level information on larval seasonality. We found that meroplankton was highly diverse (72 taxa from eight phyla) and present in the Barents Sea year-round with a peak in abundance in August and November, defying the conventional wisdom that peak abundance would coincide with the spring phytoplankton bloom. Ophiuroids, bivalves, and polychaetes dominated larval abundance while gastropods and polychaetes accounted for the bulk of the taxon diversity. Community structure varied seasonally and total abundance was generally higher south of the Polar Front while taxon richness was overall greater to the north. Of the species identified, most were known inhabitants of the Barents Sea. However, the nemertean Cephalothrix iwatai and the brittle star Ophiocten gracilis were abundant in the meroplankton despite never having been previously recorded in the northern Barents Sea. The new knowledge on seasonal patterns of individual meroplanktonic species has implications for understanding environment-biotic interactions in a changing Arctic and provides a framework for early detection of potential newcomers to the system

    Iron for Africa-Report of an Expert Workshop.

    Get PDF
    Scientific experts from nine countries gathered to share their views and experience around iron interventions in Africa. Inappropriate eating habits, infections and parasitism are responsible for significant prevalence of iron deficiency, but reliable and country-comparable prevalence estimates are lacking: improvements in biomarkers and cut-offs values adapted to context of use are needed. Benefits of iron interventions on growth and development are indisputable and outweigh risks, which exist in populations with a high infectious burden. Indeed, pathogen growth may increase with enhanced available iron, calling for caution and preventive measures where malaria or other infections are prevalent. Most African countries programmatically fortify flour and supplement pregnant women, while iron deficiency in young children is rather addressed at individual level. Coverage and efficacy could improve through increased access for target populations, raised awareness and lower cost. More bioavailable iron forms, helping to decrease iron dose, or prebiotics, which both may lower risk of infections are attractive opportunities for Africa. Fortifying specific food products could be a relevant route, adapted to local context and needs of population groups while providing education and training. More globally, partnerships involving various stakeholders are encouraged, that could tackle all aspects of the issue

    Leveraging Space-based Data from the Nearest Solar-type Star to Better Understand Stellar Activity Signatures in Radial Velocity Data

    Get PDF
    Stellar variability is a key obstacle in reaching the sensitivity required to recover Earth-like exoplanetary signals using the radial velocity (RV) detection method. To explore activity signatures in Sun-like stars, we present SolAster, a publicly distributed analysis pipeline10 that allows for comparison of space-based measurements with ground-based disk-integrated RVs. Using high-spatial-resolution Dopplergrams, magnetograms, and continuum filtergrams from the Helioseismic and Magnetic Imager aboard the Solar Dynamics Observatory (SDO), we estimate "Sun-as-a-star" disk-integrated RVs due to rotationally modulated flux imbalances and convective blueshift suppression, as well as other observables such as unsigned magnetic flux. Comparing these measurements with ground-based RVs from the NEID instrument, which observes the Sun daily using an automated solar telescope, we find a strong relationship between magnetic activity indicators and RV variation, supporting efforts to examine unsigned magnetic flux as a proxy for stellar activity in slowly rotating stars. Detrending against measured unsigned magnetic flux allows us to improve the NEID RV measurements by ∌20% (∌50 cm s−1 in a quadrature sum), yielding an rms scatter of ∌60 cm s−1 over five months. We also explore correlations between individual and averaged spectral line shapes in the NEID spectra and SDO-derived magnetic activity indicators, motivating future studies of these observables. Finally, applying SolAster to archival planetary transits of Venus and Mercury, we demonstrate the ability to recover small amplitude (<50 cm s−1) RV variations in the SDO data by directly measuring the Rossiter–McLaughlin signals

    Leveraging Space-based Data from the Nearest Solar-type Star to Better Understand Stellar Activity Signatures in Radial Velocity Data

    Get PDF
    Stellar variability is a key obstacle in reaching the sensitivity required to recover Earth-like exoplanetary signals using the radial velocity (RV) detection method. To explore activity signatures in Sun-like stars, we present SolAster, a publicly distributed analysis pipeline10 that allows for comparison of space-based measurements with ground-based disk-integrated RVs. Using high-spatial-resolution Dopplergrams, magnetograms, and continuum filtergrams from the Helioseismic and Magnetic Imager aboard the Solar Dynamics Observatory (SDO), we estimate "Sun-as-a-star" disk-integrated RVs due to rotationally modulated flux imbalances and convective blueshift suppression, as well as other observables such as unsigned magnetic flux. Comparing these measurements with ground-based RVs from the NEID instrument, which observes the Sun daily using an automated solar telescope, we find a strong relationship between magnetic activity indicators and RV variation, supporting efforts to examine unsigned magnetic flux as a proxy for stellar activity in slowly rotating stars. Detrending against measured unsigned magnetic flux allows us to improve the NEID RV measurements by ∌20% (∌50 cm s−1 in a quadrature sum), yielding an rms scatter of ∌60 cm s−1 over five months. We also explore correlations between individual and averaged spectral line shapes in the NEID spectra and SDO-derived magnetic activity indicators, motivating future studies of these observables. Finally, applying SolAster to archival planetary transits of Venus and Mercury, we demonstrate the ability to recover small amplitude (<50 cm s−1) RV variations in the SDO data by directly measuring the Rossiter–McLaughlin signals

    Widespread FUS mislocalization is a molecular hallmark of amyotrophic lateral sclerosis

    Get PDF
    Mutations causing amyotrophic lateral sclerosis (ALS) clearly implicate ubiquitously expressed and predominantly nuclear RNA binding proteins, which form pathological cytoplasmic inclusions in this context. However, the possibility that wild-type RNA binding proteins mislocalize without necessarily becoming constituents of cytoplasmic inclusions themselves remains relatively unexplored. We hypothesized that nuclear-to-cytoplasmic mislocalization of the RNA binding protein fused in sarcoma (FUS), in an unaggregated state, may occur more widely in ALS than previously recognized. To address this hypothesis, we analysed motor neurons from a human ALS induced-pluripotent stem cell model caused by the VCP mutation. Additionally, we examined mouse transgenic models and post-mortem tissue from human sporadic ALS cases. We report nuclear-to-cytoplasmic mislocalization of FUS in both VCP-mutation related ALS and, crucially, in sporadic ALS spinal cord tissue from multiple cases. Furthermore, we provide evidence that FUS protein binds to an aberrantly retained intron within the SFPQ transcript, which is exported from the nucleus into the cytoplasm. Collectively, these data support a model for ALS pathogenesis whereby aberrant intron retention in SFPQ transcripts contributes to FUS mislocalization through their direct interaction and nuclear export. In summary, we report widespread mislocalization of the FUS protein in ALS and propose a putative underlying mechanism for this process

    A user-centred approach to unlock the potential of non-invasive BCIs: an unprecedented international translational effort

    Get PDF
    Non-invasive Mental Task-based Brain-Computer Interfaces (MT-BCIs) enable their users to interact with the environment through their brain activity alone (measured using electroencephalography for example), by performing mental tasks such as mental calculation or motor imagery. Current developments in technology hint at a wide range of possible applications, both in the clinical and non-clinical domains. MT-BCIs can be used to control (neuro)prostheses or interact with video games, among many other applications. They can also be used to restore cognitive and motor abilities for stroke rehabilitation, or even improve athletic performance.Nonetheless, the expected transfer of MT-BCIs from the lab to the marketplace will be greatly impeded if all resources are allocated to technological aspects alone. We cannot neglect the Human End-User that sits in the centre of the loop. Indeed, self-regulating one’s brain activity through mental tasks to interact is an acquired skill that requires appropriate training. Yet several studies have shown that current training procedures do not enable MT-BCI users to reach adequate levels of performance. Therefore, one significant challenge for the community is that of improving end-user training.To do so, another fundamental challenge must be taken into account: we need to understand the processes that underlie MT-BCI performance and user learning. It is currently estimated that 10 to 30% of people cannot control an MT-BCI. These people are often referred to as “BCI inefficient”. But the concept of “BCI inefficiency” is debated. Does it really exist? Or, are low performances due to insufficient training, training procedures that are unsuited to these users or is the BCI data processing not sensitive enough? The currently available literature does not allow for a definitive answer to these questions as most published studies either include a limited number of participants (i.e., 10 to 20 participants) and/or training sessions (i.e., 1 or 2). We still have very little insight into what the MT-BCI learning curve looks like, and into which factors (including both user-related and machine-related factors) influence this learning curve. Finding answers will require a large number of experiments, involving a large number of participants taking part in multiple training sessions. It is not feasible for one research lab or even a small consortium to undertake such experiments alone. Therefore, an unprecedented coordinated effort from the research community is necessary.We are convinced that combining forces will allow us to characterise in detail MT-BCI user learning, and thereby provide a mandatory step toward transferring BCIs “out of the lab”. This is why we gathered an international, interdisciplinary consortium of BCI researchers from more than 20 different labs across Europe and Japan, including pioneers in the field. This collaboration will enable us to collect considerable amounts of data (at least 100 participants for 20 training sessions each) and establish a large open database. Based on this precious resource, we could then lead sound analyses to answer the previously mentioned questions. Using this data, our consortium could offer solutions on how to improve MT-BCI training procedures using innovative approaches (e.g., personalisation using intelligent tutoring systems) and technologies (e.g., virtual reality). The CHIST-ERA programme represents a unique opportunity to conduct this ambitious project, which will foster innovation in our field and strengthen our community
    • 

    corecore