33 research outputs found

    Spin Susceptibility and Superexchange Interaction in the Antiferromagnet CuO

    Full text link
    Evidence for the quasi one-dimensional (1D) antiferromagnetism of CuO is presented in a framework of Heisenberg model. We have obtained an experimental absolute value of the paramagnetic spin susceptibility of CuO by subtracting the orbital susceptibility separately from the total susceptibility through the 63^{63}Cu NMR shift measurement, and compared directly with the theoretical predictions. The result is best described by a 1D S=1/2S=1/2 antiferromagnetic Heisenberg (AFH) model, supporting the speculation invoked by earlier authors. We also present a semi-quantitative reason why CuO, seemingly of 3D structure, is unexpectedly a quasi 1D antiferromagnet.Comment: 7 pages including 4 tables and 9 figure

    High expression of cell adhesion molecule 2 unfavorably impacts survival in non-small cell lung cancer patients with brain metastases

    Get PDF
    Background: Lung cancer is one kind of malignant tumor with a high risk for morbidity and mortality compared to other solid organ malignancies. Brain metastases occur in 30-55% of non-small cell lung cancer (NSCLC) patients. Prognosis of NSCLC patients with brain metastases is very poor. Our previous study showed that cell adhesion molecule 2 (CADM2) could regulate the development of brain metastasis in NSCLC cells. Therefore, the objective of the study is to evaluate the effect of CADM2 on the prognosis of NSCLC patients with brain metastases.Methods: The expression of CADM2 was detected by quantitative real-time polymerase chain reaction (qRT-PCR) in the tissue of the primary tumor. Patients were followed up and overall survival (OS) was calculated. The relationships between CADM2 and clinicopathological features were analyzed using the chi-square test. Kaplan-Meier analysis was carried out to demonstrate the influence of CADM2 on the OS of patients. Univariate and multivariate Cox analyses were used to determine the prognosis of NSCLC patients with brain metastases.Results: A total of 139 NSCLC patients with brain metastases from the Affiliated Cancer Hospital & Institute of Guangzhou Medical University, treated between January 2015 and December 2017 were evaluated retrospectively. The expression level of CADM2 in patients ranged from 1 to 17.2677, with a median of 6.0772. Chi-square analysis showed that CADM2 gene expression level was not significantly associated with gender, age, tumor location, histological subtype, tumor T stage, extracranial metastasis, or smoking status. However, CADM2 expression was notably associated with risk for lymph node metastasis. The results of the Kaplan-Meier analysis showed that high expression [CADM2 messenger RNA (mRNA) >= 6.0772] of CADM2 was markedly associated with poor prognosis. Univariate and multivariate Cox analyses demonstrated that CADM2 was an independent risk factor for survival in NSCLC patients with brain metastases (P<0.05).Conclusions: CADM2 expression is up-regulated and closely associated with disease progression and poor prognosis in NSCLC patients with brain metastases. CADM2 expression warrants special consideration given its potential prognostic significance that might help inform clinical decision making.Pathogenesis and treatment of chronic pulmonary disease

    Continuous wavelet transform methods for the simultaneous determinations and dissolution profiles of valsartan and hydrochlorothiazide in tablets

    Get PDF
    ABSTRACT Continuous wavelet transform (CWT) was proposed for the simultaneous determination and dissolution profiles of valsartan (VAL) and hydrochlorothiazide (HCT) in tablets, without the use of a chemical separation procedure. The CWT approach was applied to the original UV spectra and their ratio spectra in the optimal wavelength ranges. After testing several wavelet families, Mexican hat function-CWT and Daubechies7-CWT (mexh-CWT and db7-CWT, respectively) were found to be suitable for the transformation of the original UV spectra. In the following procedure, mexh-CWT and Coiflets3-CWT (coif3-CWT) were found to be appropriate for the signal analysis of ratio spectra (RS) of VAL/HCT and HCT/VAL. Calibration graphs for VAL and HCT were obtained by measuring db7-CWT and mexh-CWT amplitudes in the transformation of the original absorption spectra and RS-coif-CWT and RS-mexh-CWT amplitudes in the transformation of the ratio spectra. The validity and applicability of the proposed CWT methods were evaluated through the analysis of an independent set of synthetic binary mixtures consisting of VAL and HCT. The proposed signal processing methods were then successfully applied to the simultaneous quantitative evaluation and simultaneous dissolution profiles of the related drugs in commercial tablets, with good agreement reported for the experimental results

    Skymrion lattice melting in the quantum Hall system

    Full text link
    The melting and magnetic disordering of the skyrmion lattice in the quantum Hall system at filling factor ν1\nu\approx 1 are studied. A Berezinskii-Kosterlitz-Thouless renormalization group theory is employed to describe the coupled magnetic and translational degrees of freedom. The non-trivial magnetic properties of the skyrmion system stem from the in-plane components of the non-collinear magnetization in the vicinity of skyrmions, which are described by an antiferromagnetic XY model. In a Coulomb gas formulation the `particles' are the topological defects of the XY model (vortices) and of the lattice (dislocations and disclinations). The latter frustrate the antiferromagnetic order and acquire fractional vorticity in order to minimize their energy. We find a number of melting/disordering scenarios for various lattice types. While these results do not depend on a particular model, we also consider a simple classical model for the skyrmion system. It results in a rich T=0 phase diagram. We propose that the triangular and square skyrmion lattices are generically separated by a centered rectangular phase in the quantum Hall system.Comment: 15 pages with 5 figures. Minor revisions. Important reference to M. Rao, S. Sengupta, and R. Shankar, Phys. Rev. Lett. 79, 3998 (1997) adde

    Multifunctional Magnetic-fluorescent Nanocomposites for Biomedical Applications

    Get PDF
    Nanotechnology is a fast-growing area, involving the fabrication and use of nano-sized materials and devices. Various nanocomposite materials play a number of important roles in modern science and technology. Magnetic and fluorescent inorganic nanoparticles are of particular importance due to their broad range of potential applications. It is expected that the combination of magnetic and fluorescent properties in one nanocomposite would enable the engineering of unique multifunctional nanoscale devices, which could be manipulated using external magnetic fields. The aim of this review is to present an overview of bimodal “two-in-one” magnetic-fluorescent nanocomposite materials which combine both magnetic and fluorescent properties in one entity, in particular those with potential applications in biotechnology and nanomedicine. There is a great necessity for the development of these multifunctional nanocomposites, but there are some difficulties and challenges to overcome in their fabrication such as quenching of the fluorescent entity by the magnetic core. Fluorescent-magnetic nanocomposites include a variety of materials including silica-based, dye-functionalised magnetic nanoparticles and quantum dots-magnetic nanoparticle composites. The classification and main synthesis strategies, along with approaches for the fabrication of fluorescent-magnetic nanocomposites, are considered. The current and potential biomedical uses, including biological imaging, cell tracking, magnetic bioseparation, nanomedicine and bio- and chemo-sensoring, of magnetic-fluorescent nanocomposites are also discussed

    Strategies for Controlled Placement of Nanoscale Building Blocks

    Get PDF
    The capability of placing individual nanoscale building blocks on exact substrate locations in a controlled manner is one of the key requirements to realize future electronic, optical, and magnetic devices and sensors that are composed of such blocks. This article reviews some important advances in the strategies for controlled placement of nanoscale building blocks. In particular, we will overview template assisted placement that utilizes physical, molecular, or electrostatic templates, DNA-programmed assembly, placement using dielectrophoresis, approaches for non-close-packed assembly of spherical particles, and recent development of focused placement schemes including electrostatic funneling, focused placement via molecular gradient patterns, electrodynamic focusing of charged aerosols, and others

    Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950–2019: a comprehensive demographic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: Accurate and up-to-date assessment of demographic metrics is crucial for understanding a wide range of social, economic, and public health issues that affect populations worldwide. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 produced updated and comprehensive demographic assessments of the key indicators of fertility, mortality, migration, and population for 204 countries and territories and selected subnational locations from 1950 to 2019. Methods: 8078 country-years of vital registration and sample registration data, 938 surveys, 349 censuses, and 238 other sources were identified and used to estimate age-specific fertility. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate age-specific fertility rates for 5-year age groups between ages 15 and 49 years. With extensions to age groups 10–14 and 50–54 years, the total fertility rate (TFR) was then aggregated using the estimated age-specific fertility between ages 10 and 54 years. 7417 sources were used for under-5 mortality estimation and 7355 for adult mortality. ST-GPR was used to synthesise data sources after correction for known biases. Adult mortality was measured as the probability of death between ages 15 and 60 years based on vital registration, sample registration, and sibling histories, and was also estimated using ST-GPR. HIV-free life tables were then estimated using estimates of under-5 and adult mortality rates using a relational model life table system created for GBD, which closely tracks observed age-specific mortality rates from complete vital registration when available. Independent estimates of HIV-specific mortality generated by an epidemiological analysis of HIV prevalence surveys and antenatal clinic serosurveillance and other sources were incorporated into the estimates in countries with large epidemics. Annual and single-year age estimates of net migration and population for each country and territory were generated using a Bayesian hierarchical cohort component model that analysed estimated age-specific fertility and mortality rates along with 1250 censuses and 747 population registry years. We classified location-years into seven categories on the basis of the natural rate of increase in population (calculated by subtracting the crude death rate from the crude birth rate) and the net migration rate. We computed healthy life expectancy (HALE) using years lived with disability (YLDs) per capita, life tables, and standard demographic methods. Uncertainty was propagated throughout the demographic estimation process, including fertility, mortality, and population, with 1000 draw-level estimates produced for each metric. Findings: The global TFR decreased from 2•72 (95% uncertainty interval [UI] 2•66–2•79) in 2000 to 2•31 (2•17–2•46) in 2019. Global annual livebirths increased from 134•5 million (131•5–137•8) in 2000 to a peak of 139•6 million (133•0–146•9) in 2016. Global livebirths then declined to 135•3 million (127•2–144•1) in 2019. Of the 204 countries and territories included in this study, in 2019, 102 had a TFR lower than 2•1, which is considered a good approximation of replacement-level fertility. All countries in sub-Saharan Africa had TFRs above replacement level in 2019 and accounted for 27•1% (95% UI 26•4–27•8) of global livebirths. Global life expectancy at birth increased from 67•2 years (95% UI 66•8–67•6) in 2000 to 73•5 years (72•8–74•3) in 2019. The total number of deaths increased from 50•7 million (49•5–51•9) in 2000 to 56•5 million (53•7–59•2) in 2019. Under-5 deaths declined from 9•6 million (9•1–10•3) in 2000 to 5•0 million (4•3–6•0) in 2019. Global population increased by 25•7%, from 6•2 billion (6•0–6•3) in 2000 to 7•7 billion (7•5–8•0) in 2019. In 2019, 34 countries had negative natural rates of increase; in 17 of these, the population declined because immigration was not sufficient to counteract the negative rate of decline. Globally, HALE increased from 58•6 years (56•1–60•8) in 2000 to 63•5 years (60•8–66•1) in 2019. HALE increased in 202 of 204 countries and territories between 2000 and 2019. Interpretation: Over the past 20 years, fertility rates have been dropping steadily and life expectancy has been increasing, with few exceptions. Much of this change follows historical patterns linking social and economic determinants, such as those captured by the GBD Socio-demographic Index, with demographic outcomes. More recently, several countries have experienced a combination of low fertility and stagnating improvement in mortality rates, pushing more populations into the late stages of the demographic transition. Tracking demographic change and the emergence of new patterns will be essential for global health monitoring. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens

    Global burden of 87 risk factors in 204 countries and territories, 1990�2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: Rigorous analysis of levels and trends in exposure to leading risk factors and quantification of their effect on human health are important to identify where public health is making progress and in which cases current efforts are inadequate. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 provides a standardised and comprehensive assessment of the magnitude of risk factor exposure, relative risk, and attributable burden of disease. Methods: GBD 2019 estimated attributable mortality, years of life lost (YLLs), years of life lived with disability (YLDs), and disability-adjusted life-years (DALYs) for 87 risk factors and combinations of risk factors, at the global level, regionally, and for 204 countries and territories. GBD uses a hierarchical list of risk factors so that specific risk factors (eg, sodium intake), and related aggregates (eg, diet quality), are both evaluated. This method has six analytical steps. (1) We included 560 risk�outcome pairs that met criteria for convincing or probable evidence on the basis of research studies. 12 risk�outcome pairs included in GBD 2017 no longer met inclusion criteria and 47 risk�outcome pairs for risks already included in GBD 2017 were added based on new evidence. (2) Relative risks were estimated as a function of exposure based on published systematic reviews, 81 systematic reviews done for GBD 2019, and meta-regression. (3) Levels of exposure in each age-sex-location-year included in the study were estimated based on all available data sources using spatiotemporal Gaussian process regression, DisMod-MR 2.1, a Bayesian meta-regression method, or alternative methods. (4) We determined, from published trials or cohort studies, the level of exposure associated with minimum risk, called the theoretical minimum risk exposure level. (5) Attributable deaths, YLLs, YLDs, and DALYs were computed by multiplying population attributable fractions (PAFs) by the relevant outcome quantity for each age-sex-location-year. (6) PAFs and attributable burden for combinations of risk factors were estimated taking into account mediation of different risk factors through other risk factors. Across all six analytical steps, 30 652 distinct data sources were used in the analysis. Uncertainty in each step of the analysis was propagated into the final estimates of attributable burden. Exposure levels for dichotomous, polytomous, and continuous risk factors were summarised with use of the summary exposure value to facilitate comparisons over time, across location, and across risks. Because the entire time series from 1990 to 2019 has been re-estimated with use of consistent data and methods, these results supersede previously published GBD estimates of attributable burden. Findings: The largest declines in risk exposure from 2010 to 2019 were among a set of risks that are strongly linked to social and economic development, including household air pollution; unsafe water, sanitation, and handwashing; and child growth failure. Global declines also occurred for tobacco smoking and lead exposure. The largest increases in risk exposure were for ambient particulate matter pollution, drug use, high fasting plasma glucose, and high body-mass index. In 2019, the leading Level 2 risk factor globally for attributable deaths was high systolic blood pressure, which accounted for 10·8 million (95 uncertainty interval UI 9·51�12·1) deaths (19·2% 16·9�21·3 of all deaths in 2019), followed by tobacco (smoked, second-hand, and chewing), which accounted for 8·71 million (8·12�9·31) deaths (15·4% 14·6�16·2 of all deaths in 2019). The leading Level 2 risk factor for attributable DALYs globally in 2019 was child and maternal malnutrition, which largely affects health in the youngest age groups and accounted for 295 million (253�350) DALYs (11·6% 10·3�13·1 of all global DALYs that year). The risk factor burden varied considerably in 2019 between age groups and locations. Among children aged 0�9 years, the three leading detailed risk factors for attributable DALYs were all related to malnutrition. Iron deficiency was the leading risk factor for those aged 10�24 years, alcohol use for those aged 25�49 years, and high systolic blood pressure for those aged 50�74 years and 75 years and older. Interpretation: Overall, the record for reducing exposure to harmful risks over the past three decades is poor. Success with reducing smoking and lead exposure through regulatory policy might point the way for a stronger role for public policy on other risks in addition to continued efforts to provide information on risk factor harm to the general public. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens

    Respiratory face mask: a novel and cost-effective device for use during the application of myocardial ischemia in rats*

    No full text
    To shorten operation time and improve survival rate of rats with myocardial ischemia or myocardial infarction, we use a novel device comprised of a face mask and a head/neck retainer in this study. We report the basic design of the novel respiratory face mask (RFM) and evaluate its performance in a rat model of myocardial ischemia. The device is cost-effective and easier to handle than other devices, such as tracheal intubation. Compared with conventional tracheal intubation, we found that RFM shortens operation time significantly while keeping blood indices normal; the mean operation time for rats in the mask group was (32±3) min, and that for the intubation group was (45±7) min (P<0.05). Moreover, the size and shape of the RFM can be changed according to the body weight of rats. In conclusion, RFM is an appropriate device for the establishment of myocardial infarction or ischemia-reperfusion in rats
    corecore