1,910 research outputs found
Effects of soil and canopy characteristics on microwave backscattering of vegetation
A frequency modulated continuous wave C-band (4.8 GHz) scatterometer was mounted on an aerial lift truck and backscatter coefficients of corn were acquired as functions of polarizations, view angles, and row directions. As phytomass and green leaf area index increased, the backscatter also increased. Near anthesis when the canopies were fully developed, the major scattering elements were located in the upper 1 m of the 2.8 m tall canopy and little backscatter was measured below that level. C-band backscatter data could provide information to monitor vegetation at large view zenith angles
Characterization of vegetation by microwave and optical remote sensing
Two series of carefully controlled experiments were conducted. First, plots of important crops (corn, soybeans, and sorghum), prairie grasses (big bluestem, switchgrass, tal fescue, orchardgrass, bromegrass), and forage legumes (alfalfa, red clover, and crown vetch) were manipulated to produce wide ranges of phytomass, leaf area index, and canopy architecture. Second, coniferous forest canopies were simulated using small balsam fir trees grown in large pots of soil and arranged systematically on a large (5 m) platform. Rotating the platform produced many new canopies for frequency and spatial averaging of the backscatter signal. In both series of experiments, backscatter of 5.0 GHz (C-Band) was measured as a function of view angle and polarization. Biophysical measurements included leaf area index, fresh and dry phytomass, water content of canopy elements, canopy height, and soil roughness and moisture content. For a subset of the above plots, additional measurements were acquired to exercise microwave backscatter models. These measurements included size and shape of leaves, stems, and fruit and the probability density function of leaf and stem angles. The relationships of the backscattering coefficients and the biophysical properties of the canopies were evaluated using statistical correlations, analysis of variance, and regression analysis. Results from the corn density and balsam fir experiments are discussed and analyses of data from the other experiments are summarized
Soybean canopy reflectance modeling data sets
Numerous mathematical models of the interaction of radiation with vegetation canopies have been developed over the last two decades. However, data with which to exercise and validate these models are scarce. During three days in the summer of 1980, experiments are conducted with the objective of gaining insight about the effects of solar illumination and view angles on soybean canopy reflectance. In concert with these experiment, extensive measurements of the soybean canopies are obtained. This document is a compilation of the bidirectional reflectance factors, agronomic, characteristics, canopy geometry, and leaf, stem, and pod optical properties of the soybean canopies. These data sets should be suitable for use with most vegetation canopy reflectance models
Transparent and Flexible Thin Film Electroluminescent Devices Using HiTUS Deposition and Laser Processing Fabrication
Highly transparent thin film electroluminescent structures offering excellent switch on characteristics, high luminance and large break-down voltages have been deposited onto glass and flexible polymeric materials with no substrate heating using high target utilization sputtering. Deposition of ZnS:Mn as the active light emitting layer and Y2O3,Al2O3,Ta2O5, and HfO2 as dielectric materials arranged in single and multiple layer configurations were investigated. Devices incorporating Al2O3,HfO2 quadruple layers demonstrate the highest attainable luminance at low threshold voltage. Single pulse excimer laser irradiation of the phosphor layer prior to deposition of the top dielectric layer enhanced the luminance of the devices. The devices fabricated on glass and polymeric substrates exhibited a maximum luminance of 500 and 450 cdm−2 when driven at 270 VRMS and 220 VRMS, respectively, with a 1.0 kHz sine wave
Low temperature remote plasma sputtering of indium tin oxide for flexible display applications
Tin doped indium oxide (ITO) has been directly deposited onto a variety of flexible materials by a reactive sputtering technique that utilises a remotely generated, high density plasma. This technique, known as high target utilisation sputtering (HiTUS), allows for the high rate deposition of good quality ITO films onto polymeric materials with no substrate heating or post deposition annealing. Coatings with a resistivity of 3.8 ×10−4 Ωcm and an average visible transmission of greater than 90% have been deposited onto PEN and PET substrate materials at a deposition rate of 70 nm/min. The electrical and optical properties are retained when the coatings are flexed through a 1.0 cm bend radius, making them of interest for flexible display applications
Priority setting and health policy and systems research
Health policy and systems research (HPSR) has been identified as critical to scaling-up interventions to achieve the millennium development goals, but research priority setting exercises often do not address HPSR well. This paper aims to (i) assess current priority setting methods and the extent to which they adequately include HPSR and (ii) draw lessons regarding how HPSR priority setting can be enhanced to promote relevant HPSR, and to strengthen developing country leadership of research agendas
THE EFFECT OF SELECTED KINEMATICS ON BALL SPEED AND GROUND REACTION FORCES IN FAST BOWLING
Lumbar stress fractures and lumbar injury account for the greatest amount of lost playing time in international cricket. Previous research has associated lower back injury with large peak ground reaction forces occurring during the front foot contact phase of the fast bowling action. Selected kinematics of the bowling action of 16 elite male fast bowlers were measured using an 18 camera Vicon Motion Analysis System. Ground reaction forces during front foot contact and ball release speed were recorded; correlations with kinematic factors were identified using Pearson’s correlation coefficient. Ball release speeds were correlated with run-up speed, plant angle and the motion of the front knee during the period of front foot contact. Knee flexion during the first 15 frames of the front foot contact phase was correlated with increased peak vertical force and decreased peak horizontal loading rate. The use of a heel strike technique at the instant of front foot contact was correlated with decreased peak vertical force and loading rates. All correlations observed were moderate in strength, representing the multifactorial nature of the generation of ball speed and ground reaction forces. This study motivates future investigation of the effects of these selected kinematic factors on forces occurring above the knee, and the effect of kinematic factors on the performance of an individual bowler
Diurnal changes in reflectance factor due to Sun-row direction interactions
Over a two year period, data were collected regarding the canopies of soybeans grown in rows in planter boxes placed on a turntable in an effort to investigate changes in the spectral reflectance factor related to row direction, Sun direction, soil background, and crop development stage. Results demonstrate that the direction of rows in a soybean canopy can affect the reflectance factor of the canopy by as much as 230%. The results for the red spectral region tend to support the validity of canopy reflectance models; results for the infrared region do not
- …