3,369 research outputs found
The Non-Perturbative Contribution to the Free Energy of Hot SU(N) Gauge Theory
The non-perturbative input necessary for the determination of the part of the weak coupling expansion of the free energy density for
SU(2) and SU(3) gauge theories is estimated. Although the perturbative
information completing the contribution to this order is missing, we give
arguments that the magnetic fluctuations are dominated by screened elementary
magnetic gluons.Comment: Talk presented at LATTICE96(finite temperature) 3 pages Latex2e, 3 ps
figures, 14 k
Energetic proton spectra in the 11 June 1991 solar flare
The June 11, 1991 gamma-ray flare seen by the Compton Gamma-ray Observatory (CGRO) displays several features that make it a dynamic and rich event. It is a member of a class of long duration gamma-ray events with both 2.223 MeV and greater than 8 MeV emission for hours after the impulsive phase. It also contains an inter-phase between the impulsive and extended phases that presents a challenge to the standard gamma-ray line (GRL) flare picture. This phase has strong 2.223 MeV emission and relatively weak 4.44 MeV emission indicative of a very hard parent proton spectrum. However, this would indicate emission greater than 8 MeV, which is absent from this period. We present the application of new spectroscopy techniques to this phase of the flare in order to present a reasonable explanation for this seemly inconsistent picture
Bayesian multiscale deconvolution applied to gamma-ray spectroscopy
A common task in gamma-ray astronomy is to extract spectral information, such as model constraints and incident photon spectrum estimates, given the measured energy deposited in a detector and the detector response. This is the classic problem of spectral “deconvolution” or spectral inversion. The methods of forward folding (i.e., parameter fitting) and maximum entropy “deconvolution” (i.e., estimating independent input photon rates for each individual energy bin) have been used successfully for gamma-ray solar flares (e.g., Rank, 1997; Share and Murphy, 1995). These methods have worked well under certain conditions but there are situations were they don’t apply. These are: 1) when no reasonable model (e.g., fewer parameters than data bins) is yet known, for forward folding; 2) when one expects a mixture of broad and narrow features (e.g., solar flares), for the maximum entropy method; and 3) low count rates and low signal-to-noise, for both. Low count rates are a problem because these methods (as they have been implemented) assume Gaussian statistics but Poisson are applicable. Background subtraction techniques often lead to negative count rates. For Poisson data the Maximum Likelihood Estimator (MLE) with a Poisson likelihood is appropriate. Without a regularization term, trying to estimate the “true” individual input photon rates per bin can be an ill-posed problem, even without including both broad and narrow features in the spectrum (i.e., amultiscale approach). One way to implement this regularization is through the use of a suitable Bayesian prior. Nowak and Kolaczyk (1999) have developed a fast, robust, technique using a Bayesian multiscale framework that addresses these problems with added algorithmic advantages. We outline this new approach and demonstrate its use with time resolved solar flare gamma-ray spectroscopy
Climacteric Lowers Plasma Levels of Platelet-Derived Microparticles: A Pilot Study in Pre-versus Postmenopausal Women
Background: Climacteric increases the risk of thrombotic events by alteration of plasmatic coagulation. Up to now, less is known about changes in platelet-(PMP) and endothelial cell-derived microparticles (EMP). Methods: In this prospective study, plasma levels of microparticles (MP) were compared in 21 premenopausal and 19 postmenopausal women. Results: No altered numbers of total MP or EMP were measured within the study groups. However, the plasma values of CD61-exposing MP from platelets/megakaryocytes were higher in premenopausal women (5,364 x 10(6)/l, range 4,384-17,167) as compared to postmenopausal women (3,808 x 10(6)/l, range 2,009-8,850; p = 0.020). This differentiation was also significant for the subgroup of premenopausal women without hormonal contraceptives (5,364 x 10(6)/l, range 4,223-15,916; p = 0.047; n = 15). Furthermore, in premenopausal women, higher plasma levels of PMP exposing CD62P were also present as compared to postmenopausal women (288 x 10(6)/l, range 139-462, vs. 121 x 10(6)/l, range 74-284; p = 0.024). This difference was also true for CD63+ PMP levels (281 x 10(6)/l, range 182-551, vs. 137 x 10(6)/l, range 64-432; p = 0.015). Conclusion: Climacteric lowers the level of PMP but has no impact on the number of EMP in women. These data suggest that PMP and EMP do not play a significant role in enhancing the risk of thrombotic events in healthy, postmenopausal women. Copyright (C) 2012 S. Karger AG, Base
X- and gamma-ray observations of the 15 November 1991 Solar Flare
This work expands the current understanding of the 15 November 1991 Solar Flare. The flare was a well observed event in radio to gamma-rays and is the first flare to be extensively studied with the benefit of detailed soft and hard X-ray images. In this work, we add data from all four instruments on the Compton Gamma Ray Observatory. Using these data we determined that the accelerated electron spectrum above 170 keV is best fit with a power law with a spectral index of −4.6, while the accelerated proton spectrum above 0.6 MeV is fit with a power law of spectral index −4.5. From this we computed lower limits for the energy content of these particles of∼1023 ergs (electrons) and ∼1027 ergs (ions above 0.6 MeV). These particles do not have enough energy to produce the white-light emission observed from this event. We computed a time constant of 26+20−15 s for the 2.223 MeV neutron capture line, which is consistent at the 2σ level with the lowest values of ∼70 s found for other flares. The mechanism for this short capture time may be better understood after analyses of high energy EGRET data that show potential evidence for pion emission near ∼100 MeV
Energetic proton spectra in the 11 June 1991 solar flare
We have studied a subset of the 11 June 1991 solar flare γ-ray data that we believe arise from soft proton or ion spectra. Using data from the COMPTEL instrument on the Compton Observatory we discuss the gamma-ray intensities at 2.223 MeV, 4–7 MeV, and 8–30 MeV in terms of the parent proton spectrum responsible for the emission
Gamma ray measurements of the 1991 November 15 solar flare
The 1991 November 15 X1.5 flare was a well observed solar event. Comprehensive data from ground-based observatories and spacecraft provide the basis for a contextual interpretation of gamma-ray spectra from the Compton Gamma Ray Observatory (CGRO). In particular, spectral, spatial, and temporal data at several energies are necessary to understand the particle dynamics and the acceleration mechanism(s) within this flare. X-ray images, radio, Ca XIX data and magnetograms provide morphological information on the acceleration region [4,5], while gamma-ray spectral data provide information on the parent ion spectrum. Furthermore, time profiles in hard X-rays and gamma-rays provide valuable information on temporal characteristics of the energetic particles. We report the results of our analysis of the evolution of this flare as a function of energy (∼25 keV–2.5 MeV) and time. These results, together with other high energy data (e.g. from experiments on Yohkoh, Ulysses, and PVO) may assist in identifying and understanding the acceleration mechanism(s) taking place in this event
Gauge Boson Masses in the 3-d, SU(2) Gauge-Higgs Model
We study gauge boson propagators in the symmetric and symmetry broken phases
of the 3-d, gauge-Higgs model. Correlation functions for the gauge
fields are calculated in Landau gauge. They are found to decay exponentially at
large distances leading to a non-vanishing mass for the gauge bosons. We find
that the W-boson screening mass drops in the symmetry broken phase when
approaching the critical temperature. In the symmetric phase the screening mass
stays small and is independent of the scalar--gauge coupling (the hopping
parameter). Numerical results coincide with corresponding calculations
performed for the pure gauge theory. We find in this phase
which is consistent with analytic calculations based on gap equations. This is,
however, significantly smaller than masses extracted from gauge invariant
vector boson correlation functions. As internal consistency check we also have
calculated correlation functions for gauge invariant operators leading to
scalar and vector boson masses. Finite lattice size effects have been
systematically analyzed on lattices of size with and
.Comment: 20 pages, LaTeX2e File, 8 Postscript figure
- …
