1,332 research outputs found

    Orthogonal Matching Pursuit: A Brownian Motion Analysis

    Full text link
    A well-known analysis of Tropp and Gilbert shows that orthogonal matching pursuit (OMP) can recover a k-sparse n-dimensional real vector from 4 k log(n) noise-free linear measurements obtained through a random Gaussian measurement matrix with a probability that approaches one as n approaches infinity. This work strengthens this result by showing that a lower number of measurements, 2 k log(n - k), is in fact sufficient for asymptotic recovery. More generally, when the sparsity level satisfies kmin <= k <= kmax but is unknown, 2 kmax log(n - kmin) measurements is sufficient. Furthermore, this number of measurements is also sufficient for detection of the sparsity pattern (support) of the vector with measurement errors provided the signal-to-noise ratio (SNR) scales to infinity. The scaling 2 k log(n - k) exactly matches the number of measurements required by the more complex lasso method for signal recovery with a similar SNR scaling.Comment: 11 pages, 2 figure

    Asymptotic Analysis of MAP Estimation via the Replica Method and Applications to Compressed Sensing

    Get PDF
    The replica method is a non-rigorous but well-known technique from statistical physics used in the asymptotic analysis of large, random, nonlinear problems. This paper applies the replica method, under the assumption of replica symmetry, to study estimators that are maximum a posteriori (MAP) under a postulated prior distribution. It is shown that with random linear measurements and Gaussian noise, the replica-symmetric prediction of the asymptotic behavior of the postulated MAP estimate of an n-dimensional vector "decouples" as n scalar postulated MAP estimators. The result is based on applying a hardening argument to the replica analysis of postulated posterior mean estimators of Tanaka and of Guo and Verdu. The replica-symmetric postulated MAP analysis can be readily applied to many estimators used in compressed sensing, including basis pursuit, lasso, linear estimation with thresholding, and zero norm-regularized estimation. In the case of lasso estimation the scalar estimator reduces to a soft-thresholding operator, and for zero norm-regularized estimation it reduces to a hard-threshold. Among other benefits, the replica method provides a computationally-tractable method for precisely predicting various performance metrics including mean-squared error and sparsity pattern recovery probability.Comment: 22 pages; added details on the replica symmetry assumptio

    Vector Approximate Message Passing for the Generalized Linear Model

    Full text link
    The generalized linear model (GLM), where a random vector x\boldsymbol{x} is observed through a noisy, possibly nonlinear, function of a linear transform output z=Ax\boldsymbol{z}=\boldsymbol{Ax}, arises in a range of applications such as robust regression, binary classification, quantized compressed sensing, phase retrieval, photon-limited imaging, and inference from neural spike trains. When A\boldsymbol{A} is large and i.i.d. Gaussian, the generalized approximate message passing (GAMP) algorithm is an efficient means of MAP or marginal inference, and its performance can be rigorously characterized by a scalar state evolution. For general A\boldsymbol{A}, though, GAMP can misbehave. Damping and sequential-updating help to robustify GAMP, but their effects are limited. Recently, a "vector AMP" (VAMP) algorithm was proposed for additive white Gaussian noise channels. VAMP extends AMP's guarantees from i.i.d. Gaussian A\boldsymbol{A} to the larger class of rotationally invariant A\boldsymbol{A}. In this paper, we show how VAMP can be extended to the GLM. Numerical experiments show that the proposed GLM-VAMP is much more robust to ill-conditioning in A\boldsymbol{A} than damped GAMP

    Optimal Quantization for Compressive Sensing under Message Passing Reconstruction

    Get PDF
    We consider the optimal quantization of compressive sensing measurements following the work on generalization of relaxed belief propagation (BP) for arbitrary measurement channels. Relaxed BP is an iterative reconstruction scheme inspired by message passing algorithms on bipartite graphs. Its asymptotic error performance can be accurately predicted and tracked through the state evolution formalism. We utilize these results to design mean-square optimal scalar quantizers for relaxed BP signal reconstruction and empirically demonstrate the superior error performance of the resulting quantizers.Comment: 5 pages, 3 figures, submitted to IEEE International Symposium on Information Theory (ISIT) 2011; minor corrections in v

    Hybrid approximate message passing

    Full text link
    Gaussian and quadratic approximations of message passing algorithms on graphs have attracted considerable recent attention due to their computational simplicity, analytic tractability, and wide applicability in optimization and statistical inference problems. This paper presents a systematic framework for incorporating such approximate message passing (AMP) methods in general graphical models. The key concept is a partition of dependencies of a general graphical model into strong and weak edges, with the weak edges representing interactions through aggregates of small, linearizable couplings of variables. AMP approximations based on the Central Limit Theorem can be readily applied to aggregates of many weak edges and integrated with standard message passing updates on the strong edges. The resulting algorithm, which we call hybrid generalized approximate message passing (HyGAMP), can yield significantly simpler implementations of sum-product and max-sum loopy belief propagation. By varying the partition of strong and weak edges, a performance--complexity trade-off can be achieved. Group sparsity and multinomial logistic regression problems are studied as examples of the proposed methodology.The work of S. Rangan was supported in part by the National Science Foundation under Grants 1116589, 1302336, and 1547332, and in part by the industrial affiliates of NYU WIRELESS. The work of A. K. Fletcher was supported in part by the National Science Foundation under Grants 1254204 and 1738286 and in part by the Office of Naval Research under Grant N00014-15-1-2677. The work of V. K. Goyal was supported in part by the National Science Foundation under Grant 1422034. The work of E. Byrne and P. Schniter was supported in part by the National Science Foundation under Grant CCF-1527162. (1116589 - National Science Foundation; 1302336 - National Science Foundation; 1547332 - National Science Foundation; 1254204 - National Science Foundation; 1738286 - National Science Foundation; 1422034 - National Science Foundation; CCF-1527162 - National Science Foundation; NYU WIRELESS; N00014-15-1-2677 - Office of Naval Research
    • …
    corecore