28 research outputs found

    Designing healthy communities: A walkability analysis of LEED-ND

    Get PDF
    AbstractPrevailing city design in many countries has created sedentary societies that depend on automobile use. Consequently, architects, urban designers, and land planners have developed new urban design theories, which have been incorporated into the Leadership in Energy and Environmental Design for Neighborhood Development (LEED-ND) certification system. The LEED-ND includes design elements that improve human well-being by facilitating walking and biking, a concept known as walkability. Despite these positive developments, relevant research findings from other fields of study have not been fully integrated into the LEED-ND. According to Zuniga-Teran (2015), relevant walkability research findings from multiple disciplines were organized into a walkability framework (WF) that organizes design elements related to physical activity into nine categories, namely, connectivity, land use, density, traffic safety, surveillance, parking, experience, greenspace, and community. In this study, we analyze walkability in the LEED-ND through the lens of the nine WF categories. Through quantitative and qualitative analyses, we identify gaps and strengths in the LEED-ND and propose potential enhancements to this certification system that reflects what is known about enhancing walkability more comprehensively through neighborhood design analysis. This work seeks to facilitate the translation of research into practice, which can ultimately lead to more active and healthier societies

    Changes in river water temperature between 1980 and 2012 in Yongan watershed, eastern China: Magnitude, drivers and models

    Full text link
    Climate warming is expected to have major impacts on river water quality, water column/hyporheic zone biogeochemistry and aquatic ecosystems. A quantitative understanding of spatio-temporal air (Ta) and water (Tw) temperature dynamics is required to guide river management and to facilitate adaptations to climate change. This study determined the magnitude, drivers and models for increasing Tw in three river segments of the Yongan watershed in eastern China. Over the 1980-2012 period, Tw in the watershed increased by 0.029-0.046°Cyr-1 due to a ~0.050°Cyr-1 increase of Ta and changes in local human activities (e.g., increasing developed land and population density and decreasing forest area). A standardized multiple regression model was developed for predicting annual Tw (R2=0.88-0.91) and identifying/partitioning the impact of the principal drivers on increasing Tw:Ta (76±1%), local human activities (14±2%), and water discharge (10±1%). After normalizing water discharge, climate warming and local human activities were estimated to contribute 81-95% and 5-19% of the observed rising Tw, respectively. Models forecast a 0.32-1.76°C increase in Tw by 2050 compared with the 2000-2012 baseline condition based on four future scenarios. Heterogeneity of warming rates existed across seasons and river segments, with the lower flow river and dry season demonstrating a more pronounced response to climate warming and human activities. Rising Tw due to changes in climate, local human activities and hydrology has a considerable potential to aggravate river water quality degradation and coastal water eutrophication in summer. Thus it should be carefully considered in developing watershed management strategies in response to climate change

    Dispute resolution II

    No full text

    Lectureship Forum: Reconciliation

    No full text
    Valuable process for resolving individual and/or collective disputes arising within local congregations

    Neighborhood Design, Physical Activity, and Wellbeing: Applying the Walkability Model

    No full text
    Neighborhood design affects lifestyle physical activity, and ultimately human wellbeing. There are, however, a limited number of studies that examine neighborhood design types. In this research, we examine four types of neighborhood designs: traditional development, suburban development, enclosed community, and cluster housing development, and assess their level of walkability and their effects on physical activity and wellbeing. We examine significant associations through a questionnaire (n = 486) distributed in Tucson, Arizona using the Walkability Model. Among the tested neighborhood design types, traditional development showed significant associations and the highest value for walkability, as well as for each of the two types of walking (recreation and transportation) representing physical activity. Suburban development showed significant associations and the highest mean values for mental health and wellbeing. Cluster housing showed significant associations and the highest mean value for social interactions with neighbors and for perceived safety from crime. Enclosed community did not obtain the highest means for any wellbeing benefit. The Walkability Model proved useful in identifying the walkability categories associated with physical activity and perceived crime. For example, the experience category was strongly and inversely associated with perceived crime. This study provides empirical evidence of the importance of including vegetation, particularly trees, throughout neighborhoods in order to increase physical activity and wellbeing. Likewise, the results suggest that regular maintenance is an important strategy to improve mental health and overall wellbeing in cities.Mexican government (CONACYT); Wilderness Society; University of ArizonaOpen access journal.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Designing healthy communities: A walkability analysis of LEED-ND

    No full text
    Prevailing city design in many countries has created sedentary societies that depend on automobile use. Consequently, architects, urban designers, and land planners have developed new urban design theories, which have been incorporated into the Leadership in Energy and Environmental Design for Neighborhood Development (LEED-ND) certification system. The LEED-ND includes design elements that improve human well-being by facilitating walking and biking, a concept known as walkability. Despite these positive developments, relevant research findings from other fields of study have not been fully integrated into the LEED-ND. According to Zuniga-Teran (2015), relevant walkability research findings from multiple disciplines were organized into a walkability framework (WF) that organizes design elements related to physical activity into nine categories, namely, connectivity, land use, density, traffic safety, surveillance, parking, experience, greenspace, and community. In this study, we analyze walkability in the LEED-ND through the lens of the nine WF categories. Through quantitative and qualitative analyses, we identify gaps and strengths in the LEED-ND and propose potential enhancements to this certification system that reflects what is known about enhancing walkability more comprehensively through neighborhood design analysis. This work seeks to facilitate the translation of research into practice, which can ultimately lead to more active and healthier societies

    Designing healthy communities: Testing the walkability model

    No full text
    Research from multiple domains has provided insights into how neighborhood design can be improved to have a more favorable effect on physical activity, a concept known as walkability. The relevant research findings/hypotheses have been integrated into a Walkability Framework, which organizes the design elements into nine walkability categories. The purpose of this study was to test whether this conceptual framework can be used as a model to measure the interactions between the built environment and physical activity. We explored correlations between the walkability categories and physical activity reported through a survey of residents of Tucson, Arizona (n=486). The results include significant correlations between the walkability categories and physical activity as well as between the walkability categories and the two motivations for walking (recreation and transportation). To our knowledge, this is the first study that reports links between walkability and walking for recreation. Additionally, the use of the Walkability Framework allowed us to identify the walkability categories most strongly correlated with the two motivations for walking. The results of this study support the use of the Walkability Framework as a model to measure the built environment in relation to its ability to promote physical activity. (C) 2017 The Authors.Consejo Nacional de Ciencia y Tecnologia (CONACYT - Mexican government); Wilderness Society; University of ArizonaOpen Access Journal.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore