201 research outputs found

    UV Absorption Lines from High-Velocity Gas in the Vela Supernova Remnant: New insights from STIS Echelle Observations of HD72089

    Get PDF
    The star HD72089 is located behind the Vela supernova remnant and shows a complex array of high and low velocity interstellar absorption features arising from shocked clouds. A spectrum of this star was recorded over the wavelength range 1196.4 to 1397.2 Angstroms at a resolving power lambda/Delta lambda = 110,000 and signal-to-noise ratio of 32 by STIS on the Hubble Space Telescope. We have identified 7 narrow components of C I and have measured their relative populations in excited fine-structure levels. Broader features at heliocentric velocities ranging from -70 to +130 km/s are seen in C II, N I, O I, Si II, S II and Ni II. In the high-velocity components, the unusually low abundances of N I and O I, relative to S II and Si II, suggest that these elements may be preferentially ionized to higher stages by radiation from hot gas immediately behind the shock fronts.Comment: 11 pages, 2 figures, Latex. Submitted for the special HST ERO issue of the Astrophysical Journal Letter

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    Recommendations for enterovirus diagnostics and characterisation within and beyond Europe.

    Get PDF
    Enteroviruses (EV) can cause severe neurological and respiratory infections, and occasionally lead to devastating outbreaks as previously demonstrated with EV-A71 and EV-D68 in Europe. However, these infections are still often underdiagnosed and EV typing data is not currently collected at European level. In order to improve EV diagnostics, collate data on severe EV infections and monitor the circulation of EV types, we have established European non-polio enterovirus network (ENPEN). First task of this cross-border network has been to ensure prompt and adequate diagnosis of these infections in Europe, and hence we present recommendations for non-polio EV detection and typing based on the consensus view of this multidisciplinary team including experts from over 20 European countries. We recommend that respiratory and stool samples in addition to cerebrospinal fluid (CSF) and blood samples are submitted for EV testing from patients with suspected neurological infections. This is vital since viruses like EV-D68 are rarely detectable in CSF or stool samples. Furthermore, reverse transcriptase PCR (RT-PCR) targeting the 5'noncoding regions (5'NCR) should be used for diagnosis of EVs due to their sensitivity, specificity and short turnaround time. Sequencing of the VP1 capsid protein gene is recommended for EV typing; EV typing cannot be based on the 5'NCR sequences due to frequent recombination events and should not rely on virus isolation. Effective and standardized laboratory diagnostics and characterisation of circulating virus strains are the first step towards effective and continuous surveillance activities, which in turn will be used to provide better estimation on EV disease burden

    Loss of Cytokine-STAT5 Signaling in the CNS and Pituitary Gland Alters Energy Balance and Leads to Obesity

    Get PDF
    Signal transducers and activators of transcription (STATs) are critical components of cytokine signaling pathways. STAT5A and STAT5B (STAT5), the most promiscuous members of this family, are highly expressed in specific populations of hypothalamic neurons in regions known to mediate the actions of cytokines in the regulation of energy balance. To test the hypothesis that STAT5 signaling is essential to energy homeostasis, we used Cre-mediated recombination to delete the Stat5 locus in the CNS. Mutant males and females developed severe obesity with hyperphagia, impaired thermal regulation in response to cold, hyperleptinemia and insulin resistance. Furthermore, central administration of GM-CSF mediated the nuclear accumulation of STAT5 in hypothalamic neurons and reduced food intake in control but not in mutant mice. These results demonstrate that STAT5 mediates energy homeostasis in response to endogenous cytokines such as GM-CSF

    Wastewater bacteria remediating the pharmaceutical metformin: Genomes, plasmids and products

    Get PDF
    Metformin is used globally to treat type II diabetes, has demonstrated anti-ageing and COVID mitigation effects and is a major anthropogenic pollutant to be bioremediated by wastewater treatment plants (WWTPs). Metformin is not adsorbed well by activated carbon and toxic N-chloro derivatives can form in chlorinated water. Most earlier studies on metformin biodegradation have used wastewater consortia and details of the genomes, relevant genes, metabolic products, and potential for horizontal gene transfer are lacking. Here, two metformin-biodegrading bacteria from a WWTP were isolated and their biodegradation characterized. Aminobacter sp. MET metabolized metformin stoichiometrically to guanylurea, an intermediate known to accumulate in some environments including WWTPs. Pseudomonasmendocina MET completely metabolized metformin and utilized all the nitrogen atoms for growth. Pseudomonas mendocina MET also metabolized metformin breakdown products sometimes observed in WWTPs: 1-N-methylbiguanide, biguanide, guanylurea, and guanidine. The genome of each bacterium was obtained. Genes involved in the transport of guanylurea in Aminobacter sp. MET were expressed heterologously and shown to serve as an antiporter to expel the toxic guanidinium compound. A novel guanylurea hydrolase enzyme was identified in Pseudomonas mendocina MET, purified, and characterized. The Aminobacter and Pseudomonas each contained one plasmid of 160 kb and 90 kb, respectively. In total, these studies are significant for the bioremediation of a major pollutant in WWTPs today

    An Integrated Process for Co-Developing and Implementing Written and Computable Clinical Practice Guidelines

    Get PDF
    The goal of this article is to describe an integrated parallel process for the co-development of written and computable clinical practice guidelines (CPGs) to accelerate adoption and increase the impact of guideline recommendations in clinical practice. From February 2018 through December 2021, interdisciplinary work groups were formed after an initial Kaizen event and using expert consensus and available literature, produced a 12-phase integrated process (IP). The IP includes activities, resources, and iterative feedback loops for developing, implementing, disseminating, communicating, and evaluating CPGs. The IP incorporates guideline standards and informatics practices and clarifies how informaticians, implementers, health communicators, evaluators, and clinicians can help guideline developers throughout the development and implementation cycle to effectively co-develop written and computable guidelines. More efficient processes are essential to create actionable CPGs, disseminate and communicate recommendations to clinical end users, and evaluate CPG performance. Pilot testing is underway to determine how this IP expedites the implementation of CPGs into clinical practice and improves guideline uptake and health outcomes
    corecore