2,724 research outputs found

    Prospects for local co-governance

    Get PDF
    British local authorities and their partners are increasingly developing new ways of working together with local communities. The nature of this co-working, however, is complex, multi-faceted and little understood. This article argues for greater clarity of thinking on the topic, by analysing this co-working as a form of political co-governance, and drawing attention in particular to issues of scale and democracy. Using evidence from a study of 43 local authority areas, 16 authorities are identified where co-governance is practised, following three main types of approach: service-influencing, service-delivering and parish council developing. It is concluded that strengthening political co-governance is essential for a healthy democracy

    The atomic structure of large-angle grain boundaries Σ5\Sigma 5 and Σ13\Sigma 13 in YBa2Cu3O7δ{\rm YBa_2Cu_3O_{7-\delta}} and their transport properties

    Full text link
    We present the results of a computer simulation of the atomic structures of large-angle symmetrical tilt grain boundaries (GBs) Σ5\Sigma 5 (misorientation angles \q{36.87}{^{\circ}} and \q{53.13}{^{\circ}}), Σ13\Sigma 13 (misorientation angles \q{22.62}{^{\circ}} and \q{67.38}{^{\circ}}). The critical strain level ϵcrit\epsilon_{crit} criterion (phenomenological criterion) of Chisholm and Pennycook is applied to the computer simulation data to estimate the thickness of the nonsuperconducting layer hn{\rm h_n} enveloping the grain boundaries. The hn{\rm h_n} is estimated also by a bond-valence-sum analysis. We propose that the phenomenological criterion is caused by the change of the bond lengths and valence of atoms in the GB structure on the atomic level. The macro- and micro- approaches become consistent if the ϵcrit\epsilon_{crit} is greater than in earlier papers. It is predicted that the symmetrical tilt GB Σ5\Sigma5 \theta = \q{53.13}{^{\circ}} should demonstrate a largest critical current across the boundary.Comment: 10 pages, 2 figure

    Advantages of dynamic “closed loop” stable isotope flux phenotyping over static “open loop” clamps in detecting silent genetic and dietary phenotypes

    Get PDF
    In vivo insulin sensitivity can be assessed using “open loop” clamp or “closed loop” methods. Open loop clamp methods are static, and fix plasma glucose independently from plasma insulin. Closed loop methods are dynamic, and assess glucose disposal in response to a stable isotope labeled glucose tolerance test. Using PPARα−/− mice, open and closed loop assessments of insulin sensitivity/glucose disposal were compared. Indirect calorimetry done for the assessment of diurnal substrate utilization/metabolic flexibility showed that chow fed PPARα−/− mice had increased glucose utilization during the light (starved) cycle. Euglycemic clamps showed no differences in insulin stimulated glucose disposal, whether for chow or high fat diets, but did show differences in basal glucose clearance for chow fed PPARα−/− versus SV129J-wt mice. In contrast, the dynamic stable isotope labeled glucose tolerance tests reveal enhanced glucose disposal for PPARα−/− versus SV129J-wt, for chow and high fat diets. Area under the curve for plasma labeled and unlabeled glucose for PPARα−/− was ≈1.7-fold lower, P < 0.01 during the stable isotope labeled glucose tolerance test for both diets. Area under the curve for plasma insulin was 5-fold less for the chow fed SV129J-wt (P < 0.01) but showed no difference on a high fat diet (0.30 ± 0.1 for SV129J-wt vs. 0.13 ± 0.10 for PPARα−/−, P = 0.28). This study demonstrates that dynamic stable isotope labeled glucose tolerance test can assess “silent” metabolic phenotypes, not detectable by the static, “open loop”, euglycemic or hyperglycemic clamps. Both open loop and closed loop methods may describe different aspects of metabolic inflexibility and insulin sensitivity

    Performance of photon reconstruction and identification with the CMS detector in proton-proton collisions at √s = 8 TeV

    Get PDF
    A description is provided of the performance of the CMS detector for photon reconstruction and identification in proton-proton collisions at a centre-of-mass energy of 8 TeV at the CERN LHC. Details are given on the reconstruction of photons from energy deposits in the electromagnetic calorimeter (ECAL) and the extraction of photon energy estimates. The reconstruction of electron tracks from photons that convert to electrons in the CMS tracker is also described, as is the optimization of the photon energy reconstruction and its accurate modelling in simulation, in the analysis of the Higgs boson decay into two photons. In the barrel section of the ECAL, an energy resolution of about 1% is achieved for unconverted or late-converting photons from Hγγ decays. Different photon identification methods are discussed and their corresponding selection efficiencies in data are compared with those found in simulated events
    corecore