5 research outputs found

    BASIS WEIGHT UNIFORMITY OF LIGHTLY NEEDLED HYDROENTANGLED COTTON AND COTTON BLEND WEBS

    Get PDF
    New nonwoven products containing cotton and Lyocell (Trademarked name Tencel), low temperature thermal-bondable bicomponent olefin/polyester, or comber noils were developed using needlepunching and spunlacing (hydroentanglement). Webs containing five different blends were prepared by either light needlepunching, or light needlepunching followed by hydroentangling. We acquired detailed basis weight uniformity measurements to learn about processing and the influence of fiber blend composition on web uniformity. Basis weight uniformity was evaluated without regard to web direction ("Total" uniformity), along the machine direction (MD uniformity) and across the cross direction (CD uniformity) at numerous size resolutions. We observed that blending manufactured fibers (either Tencel or olefin/polyester) with bleached cotton and comber noils substantially improved basis weight uniformity of both types of nonwovens. We also observed that subjecting needled webs to hydroentangling significantly improved Total and MD uniformities

    Influence Of Process Conditions On Melt Blown Web Structure. Part IV - Fiber Diameter

    No full text
    We are continuing an effort to quantitatively measure the influence of processing variables on the structure of polypropylene melt blown webs. In this paper, we report experimental measurements of the influence of die-to-collector distance, primary airflow rate, die temperature, collector speed and resin throughput rate on the diameter of fibers in fully-formed webs. This enabled us to quantitatively compare the influence of these processing variables on fiber diameter as well as achieve greater understanding of the melt blowing process
    corecore