199 research outputs found

    Carbon Dioxide degassing at Latera caldera (Italy): evidence of geothermal reservoir and evaluation of its potential energy

    Get PDF
    In order to test the potentiality of soil CO2 diffuse degassing measurements for the study of underground mass and heat transfer in geothermal systems detailed surveys were performed at Latera Caldera which is an excellent test site, due to the abundant available subsurface data. Over 2500 measurements of soil CO2 flux revealed that endogenous CO2 at Latera Caldera concentrates on a NE-SW band coinciding with a structural high of fractured Mesozoic limestones hosting a water-dominated high-enthalpy geothermal reservoir. The total hydrothermal CO2 degassing from the structural high has been evaluated at 350 t d-1 from an area of 3.1 km2. It has been estimated that such a CO2 release would imply a geothermal liquid flux of 263 kg s-1, with a heat release of 239 MW. The chemical and isotopic composition of the gas indicates a provenance from the geothermal reservoir and that CO2 is partly originated by thermal metamorphic decarbonation in the hottest deepest parts of the system and partly has a likely mantle origin. The ratios of CO2, H2, CH2 and CO to Ar, were used to estimate the T-P conditions of the reservoir. Results cluster at T ~ 200-300°C and PCO2 ~ 100-200 bars, close to the actual well measurements. Finally the approach proved to be an excellent tool to investigate the presence of an active geothermal reservoir at depth and that the H2-CO2-CH4-CO-Ar gas composition is a useful T-P geochemical indicator for such CO2 rich geothermal systems

    Health Hazard from Gas Emissions in the Quaternary Volcanic Province of Latium (Italy)

    Get PDF
    The Quaternary Volcanic Province of Central Italy is characterized by zones with a huge endogenous degassing where frequent, sometimes lethal, accidents occur to people and animals. The emitted gas has a deep origin (volcanic or mantle) and is mainly composed by CO2 (up to 98%) and H2S (1-4%), which may reach dangerous concentrations both in open air and indoor. Here we present the results of a multiparametric geochemical study carried out in 2007-2009 in the Provinces of Rome and Viterbo (Latium), with the aim of assessing the health hazard of their main gas emission sites (GES). Three types of GES were investigated: 1. natural, open-air thermal pools, 2. within natural reserves, 3. near to inhabited zones. More than 15 GES have been studied, and here we will illustrate some of the cases with the highest hazard. Results are presented for the sites of Vejano and Mola di Oriolo (Viterbo), Caldara di Manziana, Tor Caldara and Solforata di Pomezia (Rome). Cava dei Selci is a well-known inhabited area of the volcanic complex of Colli Albani (Rome). In each site, multi-technique surveys have been carried out to estimate the total gas output and its concentration in air, by measuring: CO2 and H2S viscous and diffuse flux (the latter by accumulation chamber), CO2 and H2S concentration in air (by TDL profiles and punctual Draeger measurements); moreover, the chemical and isotopic composition of the gas was determined in each site. In all these zones, lethal air concentrations may be reached by both H2S and CO2, but more frequently by the first. Recommendations for risk reduction were given to Civil Protection authorities.Comission of Cities and Volcanoes (CaV) of the International Association of Volcanology and Chemistry of the Earth's Interior (IAVCEI) Agencia Española de Cooperación Internacional para el Desarrollo (AECID), Gobierno de España Ministerio de Ciencia e Innovación (MICINN), Gobierno de España Unidad Militar de Emergencias (UME), Ministerio de Defensa, Gobierno de España Agencia Canaria de Investigación, Innovación y Sociedad de la Información (ACIISI), Gobierno de Canarias Viceconsejería de Infraestructuras y Planificación, Gobierno de Canarias Consejería de Turismo, Gobierno de Canarias Consejería de Medio Ambiente y Ordenación Territorial, Gobierno de Canarias Viceconsejería de Cultura y Deportes, Gobierno de Canarias Instituto Español de Oceanografía (IEO)Instituto Geológico y Minero de España (IGME)Instituto Geográfico Nacional (IGN)Academia Canaria de Seguridad Federación Canaria de Municipios (FECAM) Universidad de La Laguna (ULL)Instituto de Estudios Hispánicos de Canarias (IEHC) CajaCanariasPublishedPuerto de la Cruz, Tenerife, Spain1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive4.5. Studi sul degassamento naturale e sui gas petroliferiope

    Environmental pre-exploitation monitoring of Torre Alfina geothermal system (Central Italy)

    Get PDF
    An interesting project of geothermal pilot plant, with no-gas emission in atmosphere, has been submitted for approval in the medium-enthalpy geothermal field of Torre Alfina. This prompted us to develop a geochemical and geophysical monitoring of the area with the aim of establishing a background information to reco-gnize anomalous gas emission, induced seismicity and subsidence, possibly related to the field exploitation. The exploration conducted by Enel in the years ‘70 - '80, including the drilling of 9 deep wells, has shown the existence of a medium-enthalpy geothermal field in the Torre Alfina zone, in central Italy. The area has been affected by a very complex geological evolution during the Neogene. It was affected by the Quaternary volcanism of the Tyrrhenian margin which, reached its climax between 0.6 and 0.3 Ma. The present stress field around Quaternary volcanoes of central Italy has a NE to ENE direction of extension, in agreement with the alignment of Quaternary volcanoes and earthquake fault plane solutions, with T axes preferentially oriented between NE and ENE.PublishedPrague, Czech Republic, June 22 to July 2, 20156T. Sismicità indotta e caratterizzazione sismica dei sistemi naturaliope

    Level of carbon dioxide diffuse degassing from the ground of Vesuvio: comparison between extensive surveys and inferences on the gas source

    Get PDF
    An extensive campaign of diffuse CO2 soil flux was carried out at the cone of Vesuvio in October 2006 with two main objectives: 1) to provide an estimation of CO2 diffusely discharged through the soils in the summit area and 2) to evidence those sectors of the volcano where structural and morphological conditions could favour the gas output. The survey consisted of 502 measurements of soil CO2 flux homogenously distributed over an area of about 1.8 km2. Results of this survey were compared with those obtained during a similar campaign carried out by Frondini et al. in 2000, from which we have taken and reinterpreted a subset of data belonging to the common investigated area. Graphical statistical analysis showed three overlapping populations in both surveys, evidencing the contribution of three different sources feeding the soil CO2 degassing process. The overall CO2 emission pattern of 2006 is coherent with that observed in 2000 and suggests that a value between 120 and 140 t/day of CO2 is representative of the total CO2 discharged by diffuse degassing from the summit area of Vesuvio. The preferential exhaling area lies in the inner crater, whose contribution resulted in 45.3% of the total CO2 emission in 2006 (with 62.8 t/day) and in 57.4% (with 70.3 t/day) in 2000, although its extension is only 13% of the investigated area. This highly emissive area correlated closely with the structural discontinuities of Vesuvio cone, mainly suggesting that the NW-SE trending tectonic line is actually an active fault leaking deep gas to the bottom of the crater. The drainage action of the fault could be enhanced by the “aspiration” effect of the volcanic conduit

    Evaluation of SCO1 deletion on Saccharomyces cerevisiae metabolism through a proteomic approach

    Get PDF
    The Saccharomyces cerevisiae gene SCO1 has been shown to play an essential role in copper delivery to cytochrome c oxidase. Biochemical studies demonstrated specific transfer of copper from Cox17p to Sco1p, and physical interactions between the Sco1p and Cox2p. Deletion of SCO1 yeast gene results in a respiratory deficient phenotype. This study aims to gain a more detailed insight on the effects of SCO1 deletion on S. cerevisiae metabolism. We compared, using a proteomic approach, the protein pattern of SCO1 null mutant strain and wild-type BY4741 strain grown on fermentable and on nonfermentable carbon sources. The analysis showed that on nonfermentable medium, the SCO1 mutant displayed a protein profile similar to that of actively fermenting yeast cells. Indeed, on 3% glycerol, this mutant displayed an increase of some glycolytic and fermentative enzymes such as glyceraldehyde-3-phosphate dehydrogenase 1, enolase 2, pyruvate decarboxylase 1, and alcohol dehydrogenase 1. These data were supported by immunoblotting and enzyme activity assay. Moreover, the ethanol assay and the oxygen consumption measurement demonstrated a fermentative activity in SCO1 mutant on respiratory medium. Our results suggest that on nonfermentable carbon source, the lack of Sco1p causes a metabolic shift from respiration to fermentation

    Hazardous gas emissions from the flanks of the quiescent Colli Albani volcano (Rome, Italy)

    Get PDF
    Gas hazard was evaluated in the three most important cold gas emission zones on the flanks of the quiescent Colli Albani volcano. These zones are located above structural highs of the buried carbonate basement which represents the main regional aquifer and the main reservoir for gas rising from depth. All extensional faults affecting the limestone reservoir represent leaking pathways along which gas rises to the surface and locally accumulates in shallow permeable horizons forming pressurized pockets that may produce gas blowout when reached by wells. The gas, mainly composed by CO2 (>90 vol.%), contains appreciable quantities of H2S (0.35-6 vol.%), and both represent a potentially high local hazard. Both gases are denser than air and accumulate near ground where they may reach hazardous concentrations, and actually lethal accidents frequently occur to animals watering at local ponds. In order to evaluate the rate of degassing and the related hazard, CO2 and H2S diffuse soil flux surveys have been repeatedly carried out by accumulation chamber. The viscous gas flux of some important discrete emissions has been also evaluated and the CO2 and H2S air concentration measured by portable devises and by Tunable Diode Laser profiles. The minimum potential lethal concentration of the two gases (250 ppm for H2S and 8 vol.% for CO2) is 320 times higher for CO2, whereas the CO2/H2S concentration ratio in the emitted natural gas is significantly lower (15-159). This explains why H2S reaches hazardous, even lethal, concentrations more frequently than CO2. A relevant hazard exists for both gases in the depressed zones (channels, excavations) particularly in the non-windy early hours of the day

    Environmental pre-exploitation monitoring of Torre Alfina geothermal system (Central Italy)

    Get PDF
    An interesting project of geothermal pilot plant, with no-gas emission in atmosphere, has been submitted for approval in the medium-enthalpy geothermal field of Torre Alfina. This prompted us to develop a geochemical and geophysical monitoring of the area with the aim of establishing a background information to reco-gnize anomalous gas emission, induced seismicity and subsidence, possibly related to the field exploitation. The exploration conducted by Enel in the years ‘70 - '80, including the drilling of 9 deep wells, has shown the existence of a medium-enthalpy geothermal field in the Torre Alfina zone, in central Italy. The area has been affected by a very complex geological evolution during the Neogene. It was affected by the Quaternary volcanism of the Tyrrhenian margin which, reached its climax between 0.6 and 0.3 Ma. The present stress field around Quaternary volcanoes of central Italy has a NE to ENE direction of extension, in agreement with the alignment of Quaternary volcanoes and earthquake fault plane solutions, with T axes preferentially oriented between NE and ENE

    Cadmium accumulation and interactions with zinc, copper, and manganese, analysed by ICP-MS in a long-term Caco-2 TC7 cell model

    Get PDF
    The influence of long-term exposure to cadmium (Cd) on essential minerals was investigated using a Caco-2 TC7 cells and a multi-analytical tool: microwave digestion and inductively coupled plasma mass spectrometry. Intracellular levels, effects on cadmium accumulation, distribution, and reference concentration ranges of the following elements were determined: Na, Mg, Ca, Cr, Fe, Mn, Co, Ni, Cu, Zn, Mo, and Cd. Results showed that Caco-2 TC7 cells incubated long-term with cadmium concentrations ranging from 0 to 10 lmol Cd/l for 5 weeks exhibited a significant increase in cadmium accumulation. Furthermore, this accumulation was more marked in cells exposed long-term to cadmium compared with controls, and that this exposure resulted in a significant accumulation of copper and zinc but not of the other elements measured. Interactions of Cd with three elements: zinc, copper, and manganese were particularly studied. Exposed to 30 lmol/l of the element, manganese showed the highest inhibition and copper the lowest on cadmium intracellular accumulation but Zn, Cu, and Mn behave differently in terms of their mutual competition with Cd. Indeed, increasing cadmium in the culture medium resulted in a gradual and significant increase in the accumulation of zinc. There was a significant decrease in manganese from 5 lmol Cd/l exposure, and no variation was observed with copper. Abbreviation: AAS – Atomic absorption spectrometry; CRM– Certified reference material; PBS – Phosphate buffered saline without calcium and magnesium; DMEM – Dubelcco’s modified Eagle’s medium

    Uptake and transport of novel amphiphilic polyelectrolyte-insulin nanocomplexes by caco-2 cells - towards oral insulin

    Get PDF
    “The original publication is available at www.springerlink.com”. Copyright SpringerPurpose: The influence of polymer architecture on cellular uptake and transport across Caco-2 cells of novel amphiphilic polyelectrolyte-insulin nanocomplexes was investigated. Method: Polyallylamine (PAA) (15 kDa) was grafted with palmitoyl chains (Pa) and subsequently modified with quaternary ammonium moieties (QPa). These two amphiphilic polyelectrolytes (APs) were tagged with rhodamine and their uptake by Caco-2 cells or their polyelectrolyte complexes (PECs) with fluorescein isothiocyanate-insulin (FITC-insulin) uptake were investigated using fluorescence microscopy. The integrity of the monolayer was determined by measurement of transepithelial electrical resistance (TEER). Insulin transport through Caco-2 monolayers was determined during TEER experiments. Result: Pa and insulin were co-localised in the cell membranes while QPa complexes were found within the cytoplasm. QPa complex uptake was not affected by calcium, cytochalasin D or nocodazole. Uptake was reduced by co-incubation with sodium azide, an active transport inhibitor. Both polymers opened tight junctions reversibly where the TEER values fell by up to 35 % within 30 minutes incubation with Caco-2 cells. Insulin transport through monolayers increased when QPa was used (0.27 ngmL-1 of insulin in basal compartment) compared to Pa (0.14 ngmL-1 of insulin in basal compartment) after 2 hours. Conclusion: These APs have been shown to be taken up by Caco-2 cells and reversibly open tight cell junctions. Further work is required to optimise these formulations with a view to maximising their potential to facilitate oral delivery of insulin.Peer reviewe
    corecore