5 research outputs found

    The epitranscriptome of high-grade gliomas: a promising therapeutic target with implications from the tumor microenvironment to endogenous retroviruses

    No full text
    Abstract Glioblastoma (GBM) comprises 45.6% of all primary malignant brain cancers and is one of the most common and aggressive intracranial tumors in adults. Intratumoral heterogeneity with a wide range of proteomic, genetic, and epigenetic dysregulation contributes to treatment resistance and poor prognosis, thus demanding novel therapeutic approaches. To date, numerous clinical trials have been developed to target the proteome and epigenome of high-grade gliomas with promising results. However, studying RNA modifications, or RNA epitranscriptomics, is a new frontier within neuro-oncology. RNA epitranscriptomics was discovered in the 1970s, but in the last decade, the extent of modification of mRNA and various non-coding RNAs has emerged and been implicated in transposable element activation and many other oncogenic processes within the tumor microenvironment. This review provides background information and discusses the therapeutic potential of agents modulating epitranscriptomics in high-grade gliomas. A particular emphasis will be placed on how combination therapies that include immune agents targeting hERV-mediated viral mimicry could improve the treatment of GBM

    DDK regulates replication initiation by controlling the multiplicity of Cdc45-GINS binding to Mcm2-7

    No full text
    © 2021, eLife Sciences Publications Ltd. All rights reserved. The committed step of eukaryotic DNA replication occurs when the pairs of Mcm2-7 replicative helicases that license each replication origin are activated. Helicase activation requires the recruitment of Cdc45 and GINS to Mcm2-7, forming Cdc45-Mcm2-7-GINS complexes (CMGs). Using single-molecule biochemical assays to monitor CMG formation, we found that Cdc45 and GINS are recruited to loaded Mcm2-7 in two stages. Initially, Cdc45, GINS, and likely additional proteins are recruited to unstructured Mcm2-7 N-terminal tails in a Dbf4-dependent kinase (DDK)-dependent manner, forming Cdc45-tail-GINS intermediates (CtGs). DDK phosphorylation of multiple phosphorylation sites on the Mcm2-7 tails modulates the number of CtGs formed per Mcm2-7. In a second, inefficient event, a subset of CtGs transfer their Cdc45 and GINS components to form CMGs. Importantly, higher CtG multiplicity increases the frequency of CMG formation. Our findings reveal molecular mechanisms sensitizing helicase activation to DDK levels with implications for control of replication origin efficiency and timing
    corecore