6,978 research outputs found
Phonon sidebands of color centers in hexagonal boron nitride
Low temperature photoluminescence spectra of a color center in hexagonal
boron nitride are analyzed. The acoustic phonon sideband can be described by a
deformation coupling proportional to strain to a phonon bath that is
effectively two dimensional. The optical phonon band is described by Frohlich
coupling to the LO-branches, and a deformation coupling proportional to lattice
displacement for the TO-branch. The resonances expressed in the optical band
vary from defect to defect, in some emitters, coupling to out-of-plane
polarized phonons is reported.Comment: 7 pages, 4 fig
Relaxation dynamics of spin-3/2 silicon vacancies in 4H-SiC
Room-temperature optically detected magnetic resonance experiments on spin- 3 2 silicon vacancies in 4H-SiC are reported. The ms = +1 2 ↔ −1 2 transition is accessed using a two-microwave-frequency excitation protocol. The ratio of the Rabi frequencies of the +3 2 ↔ +1 2 and +1 2 ↔ −1 2 transitions is measured to be (0.901 ± 0.013). The deviation from √3/2 is attributed to small difference in g factor for different magnetic dipole transitions. Whereas a spin- 1 2 system is characterized by a single-spin lifetime T1, we experimentally demonstrate that the spin- 3 2 system has three distinct relaxation modes that can be preferentially excited and detected. The measured relaxation times are (0.41 ± 0.02)Tslow = Td = (3.3 ± 0.5)Tfast. This differs from the values of Tp/3 = Td = 2Tf expected for pure dipole (Tp), quadrupole (Td ), and octupole (Tf ) relaxation modes, respectively, and implies admixing of the slow dipole and fast octupole relaxation modes
Reducing the Number of Sputum Samples Examined and Thresholds for Positivity: An Opportunity to Optimise Smear Microscopy.
SETTING: Urban health clinic, Nairobi. OBJECTIVE: To evaluate the impact on tuberculosis (TB) case detection and laboratory workload of reducing the number of sputum smears examined and thresholds for diagnosing positive smears and positive cases. DESIGN: In this prospective study, three Ziehl-Neelsen stained sputum smears from consecutive pulmonary TB suspects were examined blind. The standard approach (A), > or = 2 positive smears out of 3, using a cut-off of 10 acid-fast bacilli (AFB)/100 high-power fields (HPF), was compared with approaches B, > or = 2 positive smears (> or = 4 AFB/100 HPF) out of 3, one of which is > or = 10 AFB/100 HPF; C, > or = 2 positive smears (> or = 4 AFB/100 HPF) out of 3; D, > or = 1 positive smear (> or = 10 AFB/100 HPF) out of 2; and E, > or = 1 positive smear (> or = 4 AFB/100 HPF) out of 2. The microscopy gold standard was detection of at least one positive smear (> or = 4 AFB/100 HPF) out of 3. RESULTS: Among 644 TB suspects, the alternative approaches detected from 114 (17.7%) (approach B) to 123 cases (19.1%) (approach E) compared to 105 cases (16.3%) for approach A (P < 0.005). Sensitivity ranged between 82.0% (105/128) for A and 96.1% (123/128) for E. The single positive smear approaches reduced the number of smears by 36% compared to approach A. CONCLUSION: Reducing the number of specimens and the positivity threshold to define a positive case increased the sensitivity of microscopy and reduced laboratory workload
SPH Simulations of Direct Impact Accretion in the Ultracompact AM CVn Binaries
The ultracompact binary systems V407 Vul (RX J1914.4+2456) and HM Cnc (RX
J0806.3+1527) - a two-member subclass of the AM CVn stars - continue to pique
interest because they defy unambiguous classification. Three proposed models
remain viable at this time, but none of the three is significantly more
compelling than the remaining two, and all three can satisfy the observational
constraints if parameters in the models are tuned. One of the three proposed
models is the direct impact model of Marsh & Steeghs (2002), in which the
accretion stream impacts the surface of a rapidly-rotating primary white dwarf
directly but at a near-glancing angle. One requirement of this model is that
the accretion stream have a high enough density to advect its specific kinetic
energy below the photosphere for progressively more-thermalized emission
downstream, a constraint that requires an accretion spot size of roughly
1.2x10^5 km^2 or smaller. Having at hand a smoothed particle hydrodynamics code
optimized for cataclysmic variable accretion disk simulations, it was
relatively straightforward for us to adapt it to calculate the footprint of the
accretion stream at the nominal radius of the primary white dwarf, and thus to
test this constraint of the direct impact model. We find that the mass flux at
the impact spot can be approximated by a bivariate Gaussian with standard
deviation \sigma_{\phi} = 164 km in the orbital plane and \sigma_{\theta} = 23
km in the perpendicular direction. The area of the the 2\sigma ellipse into
which 86% of the mass flux occurs is roughly 47,400 km^2, or roughly half the
size estimated by Marsh & Steeghs (2002). We discuss the necessary parameters
of a simple model of the luminosity distribution in the post-impact emission
region.Comment: 24 pages, 5 figures, Accepted for publication in Ap
Variability of the Accretion Stream in the Eclipsing Polar EP Dra
We present the first high time resolution light curves for six eclipses of
the magnetic cataclysmic variable EP Dra, taken using the superconducting
tunnel junction imager S-Cam2. The system shows a varying eclipse profile
between consecutive eclipses over the two nights of observation. We attribute
the variable stream eclipse after accretion region ingress to a variation in
the amount and location of bright material in the accretion stream. This
material creates an accretion curtain as it is threaded by many field lines
along the accretion stream trajectory. We identify this as the cause of
absorption evident in the light curves when the system is in a high accretion
state. We do not see direct evidence in the light curves for an accretion spot
on the white dwarf; however, the variation of the stream brightness with the
brightness of the rapid decline in flux at eclipse ingress indicates the
presence of some form of accretion region. This accretion region is most likely
located at high colatitude on the white dwarf surface, forming an arc shape at
the foot points of the many field lines channeling the accretion curtain.Comment: Accepted for publication in MNRAS (7 pages
- …