20 research outputs found

    More than a Hundred Years in the Search for an Accurate Diagnosis for Chagas Disease: Current Panorama and Expectations

    Get PDF
    Chagas disease, or American trypanosomiasis, is a parasitic disease of the Americas. In nature, Trypanosoma cruzi is transmitted through various species of triatomine bugs. However, non-vectorial transmission can also occur, such as transmission through blood products or by transplanting infected organs, by vertical transmission, and lately by oral route. Currently, Chagas disease affects approximately 6–7 million people worldwide, and the process of urbanization in Latin America and migratory movements from endemic countries have led to Chagas disease being diagnosed in areas where the infection is not endemic. There are several methods for diagnosing Chagas disease. Some of these are mostly used for research purposes, while others are used in routine diagnostic laboratories. According to the World Health Organization (WHO), chronic Chagas disease diagnosis is based on two serological techniques. To establish a definitive diagnosis, the results must be concordant. In the case of discordances, the WHO proposes repeating serology in a new sample, and if results remain inconclusive, a confirmatory test should be performed. This chapter shows aspects of the diagnosis of Chagas disease, which varies in its sensitivity and specificity, and its use depends on the geographical location, the available resources, and the purpose of the diagnosis

    Metabarcoding and Digital PCR (dPCR): Application in the Study of Neglected Tropical Diseases

    Get PDF
    neglected tropical diseases such as Chagas disease, dengue, Zika, chikungunya, and malaria cause millions of deaths each year and they are caused by a variety of pathogens whose diagnosis is very limited or subject to conventional testing, making a treatment less accessible, accurate and timely diagnosis for choosing their treatments. Traditional methods for pathogen detection have not been able to meet the growing need for diagnosis and control. The incorporation of new technologies such as next-generation sequencing (NGS) and digital PCR (dPCR) represent a better diagnostic possibility due to their ability to absolutely quantify pathogens with high selectivity and precision. Our planet is currently experiencing environmental changes of an unprecedented magnitude and rate, including climate change, globalized pollution, biodiversity loss, and land use changes, so neglected diseases require a comprehensive understanding of the ecology of vectors in the different eco-epidemiological contexts, as well as of the transmission cycles of pathogens and their transmission dynamics. In this sense, NGS and dPCR open a new panorama for a better understanding of these diseases with the aim of proposing new programs for their care

    Metabarcoding: A Powerful Yet Still Underestimated Approach for the Comprehensive Study of Vector-Borne Pathogen Transmission Cycles and Their Dynamics

    Get PDF
    The implementation of sustainable control strategies aimed at disrupting the transmission of vector-borne pathogens requires a comprehensive knowledge of the vector ecology in the different eco-epidemiological contexts, as well as the local pathogen transmission cycles and their dynamics. However, even when focusing only on one specific vector-borne disease, achieving this knowledge is highly challenging, as the pathogen may exhibit a high genetic diversity and multiple vector species or subspecies and host species may be involved. In addition, the development of the pathogen and the vectorial capacity of the vectors may be affected by their midgut and/or salivary gland microbiome. The recent advent of Next-Generation Sequencing (NGS) technologies has brought powerful tools that can allow for the simultaneous identification of all these essential components, although their potential is only just starting to be realized. We present a metabarcoding approach that can facilitate the description of comprehensive host-pathogen networks, integrate important microbiome and coinfection data, identify at-risk situations, and disentangle the transmission cycles of vector-borne pathogens. This powerful approach should be generalized to unravel the transmission cycles of any pathogen and their dynamics, which in turn will help the design and implementation of sustainable, effective, and locally adapted control strategies

    A DNA Vaccine Encoding for TcSSP4 Induces Protection against Acute and Chronic Infection in Experimental Chagas Disease

    No full text
    Immunization of mice with plasmids containing genes of Trypanosoma cruzi induces protective immunity in the murine model of Chagas disease. A cDNA clone that codes for an amastigote-specific surface protein (TcSSP4) was used as a candidate to develop a DNA vaccine. Mice were immunized with the recombinant protein rTcSSP4 and with cDNA for TcSSP4, and challenged with bloodstream trypomastigotes. Immunization with rTcSSP4 protein makes mice more susceptible to trypomastigote infection, with high mortality rates, whereas mice immunized with a eukaryotic expression plasmid containing the TcSSP4 cDNA were able to control the acute phase of infection. Heart tissue of gene-vaccinated animals did not show myocarditis and tissue damage at 365 days following infection, as compared with control animals. INF-&#947; was detected in sera of DNA vaccinated mice shortly after immunization, suggesting the development of a Th1 response. The TcSSP4 gene is a promising candidate for the development of an anti-T. cruzi DNA vaccine.</p

    Trypanosoma cruzi SSP4 Amastigote Protein Induces Expression of Immunoregulatory and Immunosuppressive Molecules in Peripheral Blood Mononuclear Cells

    Get PDF
    The acute phase of Chagas' disease in mice and human is marked by states of immunosuppression, in which Trypanosoma cruzi replicates extensively and releases immunomodulatory molecules that delay parasite-specific responses mediated by effector T cells. This mechanism of evasion allows the parasite to spread in the host. Parasite molecules that regulate the host immune response during Chagas’ disease have not been fully identified, particularly proteins of the amastigote stage. In this work, we evaluated the role of the GPI anchored SSP4 protein of T. cruzi as an immunomodulatory molecule in peripheral blood mononuclear cells (PBMCs). rMBP::SSP4 protein was able to stimulate nitric oxide (NO) production. Likewise, rMBP::SSP4 induced the expression of genes and production of molecules involved in the inflammatory process, such as, cytokines, chemokines, and adhesion molecules (CAMs) as determined by RT-PCR and ELISA. These results suggest that the amastigote SSP4 molecule could play a key role in the immunoregulatory and/or immunosuppressive process observed in the acute phase of infection with T. cruzi
    corecore